LogoLogo
    Logo
    • TutoringSchools
    1. Home
    2. IB
    3. Mathematics Analysis and Approaches (AA)
    4. Questions

    Two distinct lines, ${l_1}$ and ${l_2}$, intersect at a point ${\text{Q}}$.

    Question
    HLPaper 1

    Two distinct lines, l1{l_1}l1​ and l2{l_2}l2​, intersect at a point Q{\text{Q}}Q.

    In addition to QQQ, four distinct points are marked out on l1{l_1}l1​ and three distinct points on l2{l_2}l2​. A mathematician decides to join some of these eight points to form polygons.

    The line l1l_1l1​ has vector equation l1=(101)+λ(121) l_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}l1​=​101​​+λ​121​​, λ∈R{\lambda \in \mathbb{R}}λ∈R

    The line l2l_2l2​ has vector equation l2=(−102)+μ(562)l_2 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 6 \\ 2 \end{pmatrix}l2​=​−102​​+μ​562​​, μ∈R{\mu \in \mathbb{R}}μ∈R.

    The point Q{\text{Q}}Q has coordinates (4, 6, 4).

    2 extra points given are

    The point C{\text{C}}C has coordinates (3, 4, 3) and lies on l1{l_1}l1​.

    The point D{\text{D}}D has coordinates (-1, 0, 2) and lies on l2{l_2}l2​.

    1.

    Write down the value of λ{\lambda}λ corresponding to the point C{\text{C}}C.

    [1]
    Verified
    Solution
    • (343)\begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}​343​​=(101)+λ(121)\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}​101​​+λ​121​​ Hence λ+1=3\lambda +1 = 3λ+1=3 hence λ=2\lambda =2λ=2 A1

    No need to check if other equations hold at 2 as well because it is given that point CCC is indeed on l1l_1l1​

    2.

    Write down QC→\overrightarrow {{QC}}QC​ and QD→\overrightarrow {{QD}}QD​.

    [2]
    Verified
    Solution

    QC→=(−1−2−1),QD→=(−5−6−2)\overrightarrow{{QC}} = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}, \overrightarrow{{QD}} = \begin{pmatrix} -5 \\ -6 \\ -2 \end{pmatrix}QC​=​−1−2−1​​,QD​=​−5−6−2​​ A1A1

    Note: Award A1A0 if both are given as coordinates.

    3.

    Given that the polygon has to be made up of the distinct points marked on the lines, find how many sets of four points can be selected which can form the vertices of a quadrilateral.

    Each side of the quadrilateral should have some angular deviation from each other.

    [4]
    Verified
    Solution
    • QQQ cannot be a point because it will always make triangle M1
    • We cannot choose more than two points from each side otherwise we will have 2 sides on a straight line (no angular deviation) M1
    • Hence we need to pick 2 points from each side such that
    (42)×(32)=6×3=18\begin{pmatrix}4\\2\end{pmatrix} \times \begin{pmatrix}3\\2\end{pmatrix}= 6\times3=18(42​)×(32​)=6×3=18

    A1 A1

    4.

    Find how many sets of three points can be selected which can form the vertices of a triangle.

    [4]
    Verified
    Solution
    • We cannot choose more than two points from each side otherwise we will have 2 sides on a straight line
    • If QQQ is included then we need to take one point from each such that we have
    4×3=124\times 3 = 124×3=12

    A1

    • If QQQ is not included then we have 2 points from l1l_1l1​ and 1 from l2l_2l2​ or 1 from l1l_1l1​ and 2 from l2l_2l2​
    (42)×(31)+(41)×(32)=6×3+4×3=30\begin{pmatrix} 4 \\ 2 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 6\times3+4\times3=30(42​)×(31​)+(41​)×(32​)=6×3+4×3=30

    A1 M1

    • Hence total is 424242 possibilities A1

    Sign up for free to view this answer

    5.

    Verify that QQQ is the point of intersection of the two lines.

    [3]
    Verified
    Solution
    • (101)+λ(121)=(−102)+μ(562)\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 6 \\ 2 \end{pmatrix}​101​​+λ​121​​=​−102​​+μ​562​​ hence we get

    1+λ=5μ−11+\lambda = 5\mu-11+λ=5μ−1

    2λ=6μ2\lambda = 6\mu2λ=6μ

    1+λ=2+2μ1 + \lambda = 2 + 2\mu1+λ=2+2μ

    M1

    Therefore λ=3μ\lambda = 3\muλ=3μ and so 1+3μ=2+2μ⇒μ=1⇒λ=31+3\mu = 2+2\mu \Rightarrow \mu=1\Rightarrow\lambda=31+3μ=2+2μ⇒μ=1⇒λ=3

    A1

    And so we check if it holds for the first

    • 1+3=4=5−1=5(1)−11+3=4=5-1=5(1)-11+3=4=5−1=5(1)−1 Hence it holds so indeed true

    A1

    Sign up for free to view this answer

    6.

    Let EEE be the point on l1l_1l1​ with coordinates (1, 0, 1) and FFF be the point on l2l_2l2​ with parameter μ=−2\mu = -2μ=−2.

    Find the area of the quadrilateral FEDCFEDCFEDC.

    [8]
    Verified
    Solution

    METHOD 1

    Area triangle CDQ=12∣QD×QC∣CDQ = \frac{1}{2}|\mathbf{QD} \times \mathbf{QC}|CDQ=21​∣QD×QC∣

    (=12∣(−5−6−2)×(−1−2−1)∣=12∣(2−34)∣(= \frac{1}{2}|\begin{pmatrix} -5\\-6\\-2\end{pmatrix} \times \begin{pmatrix} -1\\-2\\-1\end{pmatrix}| = \frac{1}{2}|\begin{pmatrix} 2\\-3\\4 \end{pmatrix}|(=21​∣​−5−6−2​​×​−1−2−1​​∣=21​∣​2−34​​∣

    =292 = \frac{\sqrt{29}}{2}=229​​

    Either

    QE=3QC\mathbf{QE} = 3\mathbf{QC}QE=3QC , QF=3QD\mathbf{QF} = 3\mathbf{QD}QF=3QD (M1)

    Area triangle QEF=9×QEF = 9 \timesQEF=9× Area triangle CDQCDQCDQ (M1A1)

    =9292 = \frac{9\sqrt{29}}{2}=2929​​

    OR

    F has coordinates (−11, −12, −2) A1

    Area triangle QEF=12∣QF×QE∣QEF = \frac{1}{2}|\mathbf{QF} \times \mathbf{QE}|QEF=21​∣QF×QE∣

    =12∣(−15−18−6)×(−3−6−3)∣= \frac{1}{2}|\begin{pmatrix} -15\\-18\\-6 \end{pmatrix} \times \begin{pmatrix} -3\\-6\\-3\end{pmatrix}|=21​∣​−15−18−6​​×​−3−6−3​​∣

    =9292 = \frac{9\sqrt{29}}{2}=2929​​

    M1A1

    THEN

    Area of FEDC=9292−292FEDC = \frac{9\sqrt{29}}{2} - \frac{\sqrt{29}}{2}FEDC=2929​​−229​​

    =429= 4\sqrt{29}=429​

    Method 2

    F has coordinates (−11,−12,−2) A1

    area= 12∣EC×ED∣+12∣DE×DF∣\frac{1}{2}|\mathbf{EC} \times \mathbf{ED}| + \frac{1}{2}|\mathbf{DE} \times \mathbf{DF}|21​∣EC×ED∣+21​∣DE×DF∣** M1**

    EC=(−201)\mathbf{EC} = \begin{pmatrix} - 2\\ 0 \\1 \end{pmatrix}EC=​−201​​

    ED=(242)\mathbf{ED} =\begin{pmatrix}2\\4\\2 \end{pmatrix}ED=​242​​

    EC×ED=(−46−8)\mathbf{EC} \times \mathbf{ED} = \begin{pmatrix} -4\\6\\-8 \end{pmatrix}EC×ED=​−46−8​​

    DE=(20−1)\mathbf{DE} = \begin{pmatrix} 2\\0\\-1 \end{pmatrix}DE=​20−1​​

    DF=(−10−12−4)\mathbf{DF} = \begin{pmatrix} -10\\-12\\-4\end{pmatrix} DF=​−10−12−4​​

    DE×DF=(−1218−24)\mathbf{DE} \times \mathbf{DF} = \begin{pmatrix} -12\\18\\-24 \end{pmatrix}DE×DF=​−1218−24​​

    Area = 12×229+12×629\frac{1}{2} \times 2\sqrt{29} + \frac{1}{2} \times 6\sqrt{29}21​×229​+21​×629​

    =429= 4\sqrt{29}=429​ A1

    Sign up for free to view this answer

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Analysis and Approaches (AA)?

    Related topics

    SL 3.1—3d space, volume, angles, distance, midpointsAHL 3.14—Vector equation of lineAHL 3.18—Intersections of lines & planes

    Join 350k+ Students Already Crushing Their Exams

    Footer

    General

    • About us
    • Mission
    • Tutoring
    • Blog
    • State of learning surveyNew

    • Content philosophy
    • Content manifesto
    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB

    • Biology (New syllabus)
    • Business Management
    • Chemistry (New syllabus)
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • View more...
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    SAT® is a trademark registered and owned by the College Board®, which is not affiliated with and does not endorse this product or site.

    RedditInstagramTikTokDiscord
    GDPR compliant