Consider the equation $$(z-1)^3=i$$, $$z \in \mathbb{C}$$. The roots of this equation are $$\omega_1$$, $$\omega_2$$ and $$\omega_3$$, where $$\Im\left(\omega_2\right)>0$$ and $$\Im\left(\omega_3\right)<0$$.

Question
HLPaper 1

Consider the equation (z1)3=i(z-1)^3=i, zCz \in \mathbb{C}. The roots of this equation are ω1\omega_1, ω2\omega_2 and ω3\omega_3, where (ω2)>0\Im\left(\omega_2\right)>0 and (ω3)<0\Im\left(\omega_3\right)<0. The roots ω1\omega_1, ω2\omega_2 and ω3\omega_3 are represented by the points XX, YY and ZZ respectively on an Argand diagram. Consider the equation (z1)3=i(z3)(z-1)^3=i(z^3), zCz \in \mathbb{C}.

1.

Verify that ω1=1+eiπ6{\omega}_1=1+e^{i\frac{\pi}{6}} is a root of this equation.

[2]
Verified
Solution

1+eiπ613{1 + e^{i\frac{\pi}{6}} - 1^3} {= e^{i\frac{\pi}{6}}^3} A1 =eiπ2{= e^{i\frac{\pi}{2}}}A1 =cos(π2)+isin(π2){= \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)} =i{= i}AG

Note: Candidates who solve the equation correctly can be awarded the above two marks. The working for part (i) may be seen in part (ii).

[2marks]

2.

Find ω2{\omega}_2 and ω3{\omega}_3, expressing these in the form a+eiθ{a}+{e}^{i\theta}, where aR{a} \in \mathbb{R} and θ>0{\theta} > 0.

[4]
Verified
Solution

(zi1)3=ei(π2+2πk){(zi-1)^3=e^{i(\frac{\pi}{2}+2\pi k)}}(M1) z1=ei(π6+4πk6){z-1=e^{i(\frac{\pi}{6}+\frac{4\pi k}{6})}}(M1) (k=1)ω2=1+ei(5π6){(k=1)⇒ω_2=1+e^{i(\frac{5\pi}{6})}}A1 (k=2)ω3=1+ei(9π6){(k=2)⇒ω_3=1+e^{i(\frac{9\pi}{6})}}A1

[4 marks]

3.

Plot the points XX, YY and ZZ on an Argand diagram.

[4]
Verified
Solution

EITHER attempt to express eiπ6e^{i\frac{\pi}{6}}, ei5π6e^{i\frac{5\pi}{6}}, ei9π6e^{i\frac{9\pi}{6}} in Cartesian form and translate 1 unit in the positive direction of the real axis (M1) ** OR** attempt to express w1w_1, w2w_2 and w3w_3 in Cartesian form (M1)

THEN Note: To award A marks, it is not necessary to see XX, YY or ZZ, the w1w_1, or the solid lines A1A1A1

[4marks]

4.

Find XZXZ.

[3]
Verified
Solution

valid attempt to find ω1ω3{\omega}_1 - {\omega}_3 or ω3ω1{\omega}_3 - {\omega}_1 M1 ω1ω3=(1+32+12i)(1i)=32+32i{\omega}_1 - {\omega}_3 = (1 + \frac{{\sqrt{3}}}{2} + \frac{1}{2}i) - (1 - i) = \frac{{\sqrt{3}}}{2} + \frac{3}{2}i OR cos(π6)+i  sin(π6)+i  sin(π2){\cos}(\frac{\pi}{6}) + i \; {\sin}(\frac{\pi}{6}) + i \; {\sin}(\frac{\pi}{2}) valid attempt to find 32+32i{|\frac{{\sqrt{3}}}{2} + \frac{3}{2}i|} M1 34+94{{\sqrt{\frac{3}{4}} + \frac{9}{4}}} XZ=3{XZ} = {\sqrt{3}} A1

[3marks]*

Sign up for free to view this answer

5.

By using de Moivre’s theorem, show that β=11eiπ6{\beta} = \frac{1}{{1 - e^{i\frac{\pi}{6}}}} is a root of this equation.

[3]
Verified
Solution

METHOD 1 11eiπ6=11(cos(π6)+isin(π6))M1\frac{1}{{1 - e^{i\frac{\pi}{6}}}} = \frac{1}{{1 - (\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right))}} \quad \emph{M1} =223iA1= \frac{2}{{2 - \sqrt{3} - i}} \quad \emph{A1} attempt to use conjugate to rationalise \quad \emph{M1} =423+2i(23)2+1A1= \frac{{4 - 2\sqrt{3} + 2i}}{{(2 - \sqrt{3})^2 + 1}} \quad \emph{A1} =12+1423i= \frac{1}{2} + \frac{1}{{4 - 2\sqrt{3}}}i Re(β)=12A1\Rightarrow Re(\beta) = \frac{1}{2} \quad \emph{A1}

Note: Their final imaginary part does not have to be correct in order for the final three AA marks to be awarded

METHOD 2 11eiπ6=11(cos(π6)+isin(π6))M1\frac{1}{{1 - e^{i\frac{\pi}{6}}}} = \frac{1}{{1 - (\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right))}} \quad \emph{M1} attempt to use conjugate to rationalise \quad \emph{M1} =1(1cos(π6))isin(π6)×(1cos(π6))+isin(π6)(1cos(π6))+isin(π6)A1= \frac{1}{{(1 - \cos\left(\frac{\pi}{6}\right)) - i\sin\left(\frac{\pi}{6}\right)}} \times \frac{{(1 - \cos\left(\frac{\pi}{6}\right)) + i\sin\left(\frac{\pi}{6}\right)}}{{(1 - \cos\left(\frac{\pi}{6}\right)) + i\sin\left(\frac{\pi}{6}\right)}} \quad \emph{A1} =(1cos(π6))+isin(π6)(2)2cos(π6)A1= \frac{{(1 - \cos\left(\frac{\pi}{6}\right)) + i\sin\left(\frac{\pi}{6}\right)}}{{(2) - 2\cos\left(\frac{\pi}{6}\right)}} \quad \emph{A1} =(1cos(π6))+isin(π6)22cos(π6)A1= \frac{{(1 - \cos\left(\frac{\pi}{6}\right)) + i\sin\left(\frac{\pi}{6}\right)}}{{2 - 2\cos\left(\frac{\pi}{6}\right)}} \quad \emph{A1} =12+122cos(π6)i= \frac{1}{2} + \frac{1}{{2 - 2\cos\left(\frac{\pi}{6}\right)}}i Re(β)=12A1\Rightarrow Re(\beta) = \frac{1}{2} \quad \emph{A1}

Note: Their final imaginary part does not have to be correct in order for the final three AA marks to be awarded

METHOD 3 attempt to multiply through by (eiπ12eiπ12)M1\left(-\frac{e^{-i\frac{\pi}{12}}}{e^{-i\frac{\pi}{12}}}\right) \quad \emph{M1} 11eiπ6=eiπ12eiπ12eiπ12A1\frac{1}{{1 - e^{i\frac{\pi}{6}}}} = -\frac{{e^{-i\frac{\pi}{12}}}}{{e^{-i\frac{\pi}{12}} - e^{i\frac{\pi}{12}}}} \quad \emph{A1} attempting to re-write in r-cis form \quad \emph{M1} =cos(π12)+isin(π12)cos(π12)+isin(π12)cos(π12)isin(π12)A1= -\frac{{\cos\left(\frac{-\pi}{12}\right) + i\sin\left(\frac{-\pi}{12}\right)}}{{\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right) - \cos\left(\frac{-\pi}{12}\right) - i\sin\left(\frac{-\pi}{12}\right)}} \quad \emph{A1} =cos(π12)+isin(π12)2isin(π12)A1= -\frac{{\cos\left(\frac{-\pi}{12}\right) + i\sin\left(\frac{-\pi}{12}\right)}}{{2i\sin\left(\frac{\pi}{12}\right)}} \quad \emph{A1} =1212icot(π12)= \frac{1}{2} - \frac{1}{2i}\cot\left(\frac{\pi}{12}\right) Re(β)=12A1\Rightarrow Re(\beta) = \frac{1}{2} \quad \emph{A1}

METHOD 4 attempt to multiply through by (1eiπ61eiπ6)M1\left(\frac{{1 - e^{-i\frac{\pi}{6}}}}{{1 - e^{-i\frac{\pi}{6}}}}\right) \quad \emph{M1} 11eiπ6=1eiπ61eiπ6eiπ6+1A1\frac{1}{{1 - e^{i\frac{\pi}{6}}}} = \frac{{1 - e^{-i\frac{\pi}{6}}}}{{1 - e^{-i\frac{\pi}{6}} - e^{i\frac{\pi}{6}} + 1}} \quad \emph{A1} attempting to re-write in r-cis form \quad \emph{M1} =1cos(π6)isin(π6)(2cos(π6))A1= \frac{{1 - \cos\left(\frac{\pi}{6}\right) - i\sin\left(\frac{\pi}{6}\right)}}{{(2 - \cos\left(\frac{\pi}{6}\right))}} \quad \emph{A1} attempt to re-write in Cartesian form \quad \emph{M1} =13212i23A1= \frac{{1 - \frac{\sqrt{3}}{2} - \frac{1}{2}i}}{{2 - \sqrt{3}}} \quad \emph{A1} Re(β)=12A1\Rightarrow Re(\beta) = \frac{1}{2} \quad \emph{A1}

Note: Their final imaginary part does not have to be correct in order for the final AA mark to be awarded

[6 marks]

Sign up for free to view this answer

Join 350k+ Students Already Crushing Their Exams