LogoLogo
    Logo
    • TutoringPricing
    1. Home
    2. IB
    3. Mathematics Analysis and Approaches (AA)
    4. Questions

    Consider the following trigonmetric expression

    Question
    HLPaper 1

    Consider the following trigonmetric expression

    sin⁡(x+y)−sin⁡(x−y)\sin(x+y)-\sin(x-y)sin(x+y)−sin(x−y)
    1.

    Show that the expression equal to 2cos⁡(x)sin⁡(y)2\cos(x)\sin(y)2cos(x)sin(y)

    [3]
    Verified
    Solution
    • sin⁡(x+y)=sin⁡(x)cos⁡(y)+sin⁡(y)cos⁡(x)\sin(x+y)=\sin(x)\cos(y)+\sin(y)\cos(x)sin(x+y)=sin(x)cos(y)+sin(y)cos(x)
    • sin⁡(x−y)=sin⁡(x)cos⁡(y)−sin⁡(y)cos⁡(x)\sin(x-y)=\sin(x)\cos(y)-\sin(y)\cos(x)sin(x−y)=sin(x)cos(y)−sin(y)cos(x) A1
    • Hence sin⁡(x+y)−sin⁡(x−y)=sin⁡(x)cos⁡(y)+sin⁡(y)cos⁡(x)−(sin⁡(x)cos⁡(y)−sin⁡(y)cos⁡(x))\sin(x+y)-\sin(x-y) = \sin(x)\cos(y)+\sin(y)\cos(x)-(\sin(x)\cos(y)-\sin(y)\cos(x))sin(x+y)−sin(x−y)=sin(x)cos(y)+sin(y)cos(x)−(sin(x)cos(y)−sin(y)cos(x)) M1
    • =2cos⁡(x)sin⁡(y)=2\cos(x)\sin(y)=2cos(x)sin(y) A1
    2.

    Hence, using mathematical induction and the above identity, prove that ∑r=1ncos⁡((2r−1)α)=sin⁡(2nα)2sin⁡α\sum_{r=1}^{n} \cos((2r-1)\alpha) = \frac{\sin(2n\alpha)}{2\sin\alpha}∑r=1n​cos((2r−1)α)=2sinαsin(2nα)​ for n∈Z+n \in \mathbb{Z}^+n∈Z+.

    [8]
    Verified
    Solution

    let P(n)\mathrm{P}(n)P(n) be the proposition that ∑r=1ncos⁡(2r−1)α=sin⁡2nα2sin⁡α\sum_{r=1}^n \cos (2 r-1) \alpha=\frac{\sin 2 n \alpha}{2 \sin \alpha}∑r=1n​cos(2r−1)α=2sinαsin2nα​ for n∈Z+n \in \mathbb{Z}^{+}n∈Z+

    considering P(1)\mathrm{P}(1)P(1) :

     LHS =cos⁡(1)α=cos⁡α and RHS =sin⁡2α2sin⁡α=2sin⁡αcos⁡α2sin⁡α=cos⁡α= LHS \text { LHS }=\cos (1) \alpha=\cos \alpha \text { and RHS }=\frac{\sin 2 \alpha}{2 \sin \alpha}=\frac{2 \sin \alpha \cos \alpha}{2 \sin \alpha}=\cos \alpha=\text { LHS } LHS =cos(1)α=cosα and RHS =2sinαsin2α​=2sinα2sinαcosα​=cosα= LHS 

    A1 M1

    so P(1)\mathrm{P}(1)P(1) is true

    assume P(k)\mathrm{P}(k)P(k) is true, i.e. ∑r=1kcos⁡(2r−1)α=sin⁡2kα2sin⁡α(k∈Z+)\sum_{r=1}^k \cos (2 r-1) \alpha=\frac{\sin 2 k \alpha}{2 \sin \alpha}\left(k \in \mathbb{Z}^{+}\right)∑r=1k​cos(2r−1)α=2sinαsin2kα​(k∈Z+) M1

    Note: Award M0 for statements such as "let n=kn=kn=k ". Note: Subsequent marks after this M1 are independent of this mark and can be awarded.

    considering P(k+1)\mathrm{P}(k+1)P(k+1)

    ∑r=1k+1cos⁡(2r−1)α=∑r=1kcos⁡(2r−1)α+cos⁡((2(k+1)−1)α)\sum_{r=1}^{k+1} \cos (2 r-1) \alpha=\sum_{r=1}^k \cos (2 r-1) \alpha+\cos ((2(k+1)-1) \alpha)r=1∑k+1​cos(2r−1)α=r=1∑k​cos(2r−1)α+cos((2(k+1)−1)α)

    M1

    =sin⁡2kα2sin⁡α+cos⁡((2(k+1)−1)α)=sin⁡2kα+2cos⁡((2k+1)α)sin⁡α2sin⁡α=sin⁡2kα+sin⁡((2k+1)α)+α)−sin⁡((2k+1)α−α)2sin⁡α=sin⁡2kα+sin⁡(2kα+2α)−sin⁡2kα2sin⁡α=sin⁡(2(k+1)α)2sin⁡α\begin{aligned} & =\frac{\sin 2 k \alpha}{2 \sin \alpha}+\cos ((2(k+1)-1) \alpha) \\ & =\frac{\sin 2 k \alpha+2 \cos ((2 k+1) \alpha) \sin \alpha}{2 \sin \alpha} \\ & = \frac{\sin2k\alpha +\sin((2k+1)\alpha)+\alpha)-\sin((2k+1)\alpha-\alpha)}{2\sin\alpha} \\ & =\frac{\sin2k\alpha+\sin(2k\alpha+2\alpha)-\sin2k\alpha}{2\sin \alpha}\\ & =\frac{\sin(2(k+1)\alpha)}{2\sin\alpha}\end{aligned}​=2sinαsin2kα​+cos((2(k+1)−1)α)=2sinαsin2kα+2cos((2k+1)α)sinα​=2sinαsin2kα+sin((2k+1)α)+α)−sin((2k+1)α−α)​=2sinαsin2kα+sin(2kα+2α)−sin2kα​=2sinαsin(2(k+1)α)​​ A1 A1 A1

    P(k+1)\mathrm{P}(k+1)P(k+1) is true whenever P(k)\mathrm{P}(k)P(k) is true, P(1)\mathrm{P}(1)P(1) is true, so P(n)\mathrm{P}(n)P(n) is true for n∈Z+n \in \mathbb{Z}^{+}n∈Z+ R1

    Note: Award the final R1 mark provided at least five of the previous marks have been awarded.

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Analysis and Approaches (AA)?

    Related topics

    AHL 1.15—Proof by induction, contradiction, counterexamplesAHL 3.11—Relationships between trig functions

    Join 350k+ Students Already Crushing Their Exams

    Footer

    General

    • Pricing
    • About us
    • Mission
    • Tutoring
    • Blog

    Company

    • State of learning surveyNew

    • Content philosophy
    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB Subjects

    • Biology
    • Business Management
    • Chemistry
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • English Lang & Lit
    • English Lit
    • Environmental systems and societies (ESS)
    • Environmental systems and societies (ESS)
    • French A
    • French AB initio
    • French B
    • Geography
    • German A
    • German AB initio
    • German B
    • Global Politics
    • History
    • Mathematics Analysis and Approaches (AA)
    • Mathematics Applications & Interpretation (Math AI)
    • Physics
    • Psychology
    • Spanish A
    • Spanish AB initio
    • Spanish B
    • Sports, exercise and health science (SEHS)
    • Sports, exercise and health science (SEHS)
    • Theory of Knowledge (TOK)
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    SAT® is a trademark registered and owned by the College Board®, which is not affiliated with and does not endorse this product or site.

    RedditInstagramTikTokDiscord