LogoLogo
    Logo
    • TutoringPricing
    1. Home
    2. IB
    3. Mathematics Analysis and Approaches (AA)
    4. Questions

    Question
    HLPaper 1

    Let the roots of the equation z3=−3+3i{z^3} = - 3 + \sqrt 3 \text{i}z3=−3+3​i be aaa, bbb and ccc.

    On an Argand diagram, aaa, bbb and ccc are represented by the points X, Y and Z respectively.

    1.

    Find the area of triangle XYZXYZXYZ.

    [4]
    Verified
    Solution

    METHOD 1 attempting to find the total area of (congruent) triangles XOY, YOZ and XOZM1 Area =3(12)(1216)(1216)sin⁡2π3 = 3\left( {\frac{1}{2}} \right)\left( {12^{\frac{1}{6}}} \right)\left( {12^{\frac{1}{6}}} \right)\sin\frac{2\pi}{3}=3(21​)(1261​)(1261​)sin32π​ A1A1 Note: Award A1 for (1216)(1216)\left( {12^{\frac{1}{6}}} \right)\left( {12^{\frac{1}{6}}} \right)(1261​)(1261​) and A1 for sin⁡2π3\sin\frac{2\pi}{3}sin32π​ = 334(1213)\frac{3\sqrt 3 }{4}\left( {12^{\frac{1}{3}}} \right)433​​(1231​) (or equivalent) A1

    METHOD2 XY^2 =(1216)2+(1216)2−2(1216)(1216)cos⁡2π3 = {\left( {12^{\frac{1}{6}}} \right)^2} + {\left( {12^{\frac{1}{6}}} \right)^2} - 2\left( {12^{\frac{1}{6}}} \right)\left( {12^{\frac{1}{6}}} \right)\cos\frac{2\pi }{3}=(1261​)2+(1261​)2−2(1261​)(1261​)cos32π​ (or equivalent) A1 XY =3(1216) = \sqrt 3 \left( {12^{\frac{1}{6}}} \right)=3​(1261​) (or equivalent) A1 attempting to find the area of XYZ using Area = 12\frac{1}{2}21​ × XY × YZ × sin⁡α\sin\alphasinα for exampleM1 Area =12(3×1216)(3×1216)sin⁡π3 = \frac{1}{2}\left( {\sqrt 3 \times {12^{\frac{1}{6}}}} \right)\left( {\sqrt 3 \times {12^{\frac{1}{6}}}} \right)\sin\frac{\pi }{3}=21​(3​×1261​)(3​×1261​)sin3π​ = 334(1213)\frac{3\sqrt 3 }{4}\left( {12^{\frac{1}{3}}} \right)433​​(1231​) (or equivalent) A1

    [4 marks]

    2.

    Express −3+3i- 3 + \sqrt{3} i−3+3​i in the form reiθr e^{i\theta}reiθ, where r>0r > 0r>0 and −π<θ⩽π-\pi < \theta \leqslant \pi−π<θ⩽π.

    [5]
    Verified
    Solution

    attempt to find modulus (M1) r=23(=12)r = 2\sqrt{3} \left( { = \sqrt{12} } \right)r=23​(=12​) A1 attempt to find argument in the correct quadrant (M1) θ=π+arctan(−33)\theta = \pi + \text{arctan}\left( { - \frac{\sqrt{3}}{3}} \right)θ=π+arctan(−33​​) A1 =5π6 = \frac{5\pi}{6}=65π​ A1 −3+3i=12 e5πi6(=23 e5πi6) - 3 + \sqrt{3}i = \sqrt{12} \, \text{e}^{\frac{5\pi i}{6}}\left( { = 2\sqrt{3} \, \text{e}^{\frac{5\pi i}{6}}} \right)−3+3​i=12​e65πi​(=23​e65πi​) [5 marks]

    3.

    Find aaa, bbb and ccc expressing your answers in the form r(eiθ)r\left(e^{i\theta}\right)r(eiθ), where r>0r > 0r>0 and −π<θ≤π-\pi < \theta \leq \pi−π<θ≤π.

    [5]
    Verified
    Solution

    attempt to find a root using de Moivre’s theorem M1 1216e5πi1812^{\frac{1}{6}} \mathrm{e}^{\frac{5\pi \mathrm{i}}{18}}1261​e185πi​ A1 attempt to find further two roots by adding and subtracting 2π3\frac{2\pi}{3}32π​ to the argument *** M1*** 1216e−7πi1812^{\frac{1}{6}} \mathrm{e}^{ - \frac{7\pi \mathrm{i}}{18}}1261​e−187πi​ A1 1216e17πi1812^{\frac{1}{6}} \mathrm{e}^{\frac{17\pi \mathrm{i}}{18}}1261​e1817πi​ A1 Note: Ignore labels for aaa, bbb and ccc at this stage.

    [5 marks]

    4.

    By considering the sum of the roots aaa, bbb and ccc, show that

    cos⁡5π18+cos⁡7π18+cos⁡17π18=0{\cos}\frac{{5\pi }}{{18}} + {\cos}\frac{{7\pi }}{{18}} + {\cos}\frac{{17\pi }}{{18}} = 0cos185π​+cos187π​+cos1817π​=0.

    [4]
    Verified
    Solution

    a+b+c=0a + b + c = 0a+b+c=0 R1 1216(cos⁡(−7π18)+i sin⁡(−7π18)+cos⁡5π18+i sin⁡5π18+cos⁡17π18+i sin⁡17π18)=012^{\frac{1}{6}}\left( \cos\left( - \frac{7\pi }{18} \right) + \text{i}\,\sin\left( - \frac{7\pi }{18} \right) + \cos\frac{5\pi }{18} + \text{i}\,\sin\frac{5\pi }{18} + \cos\frac{17\pi }{18} + \text{i}\,\sin\frac{17\pi }{18} \right) = 01261​(cos(−187π​)+isin(−187π​)+cos185π​+isin185π​+cos1817π​+isin1817π​)=0 A1 consideration of real parts M1 1216(cos⁡(−7π18)+cos⁡5π18+cos⁡17π18)=012^{\frac{1}{6}}\left( \cos\left( - \frac{7\pi }{18} \right) + \cos\frac{5\pi }{18} + \cos\frac{17\pi }{18} \right) = 01261​(cos(−187π​)+cos185π​+cos1817π​)=0 cos⁡(−7π18)=cos⁡17π18\cos\left( - \frac{7\pi }{18} \right) = \cos\frac{17\pi }{18}cos(−187π​)=cos1817π​ explicitly stated A1 cos⁡5π18+cos⁡7π18+cos⁡17π18=0\cos\frac{5\pi }{18} + \cos\frac{7\pi }{18} + \cos\frac{17\pi }{18} = 0cos185π​+cos187π​+cos1817π​=0 AG [4 marks]

    Sign up for free to view this answer

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Analysis and Approaches (AA)?

    Related topics

    AHL 1.12—Complex numbers – Cartesian form and Argand diagAHL 1.13—Polar and Euler formAHL 1.14—Complex roots of polynomials, conjugate roots, De Moivre’s, powers & roots of complex numbers

    Join 350k+ Students Already Crushing Their Exams

    Footer

    General

    • Pricing
    • About us
    • Mission
    • Tutoring
    • Blog

    Company

    • State of learning surveyNew

    • Content philosophy
    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB Subjects

    • Biology
    • Business Management
    • Chemistry
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • English Lang & Lit
    • English Lit
    • Environmental systems and societies (ESS)
    • Environmental systems and societies (ESS)
    • French A
    • French AB initio
    • French B
    • Geography
    • German A
    • German AB initio
    • German B
    • Global Politics
    • History
    • Mathematics Analysis and Approaches (AA)
    • Mathematics Applications & Interpretation (Math AI)
    • Physics
    • Psychology
    • Spanish A
    • Spanish AB initio
    • Spanish B
    • Sports, exercise and health science (SEHS)
    • Sports, exercise and health science (SEHS)
    • Theory of Knowledge (TOK)
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    SAT® is a trademark registered and owned by the College Board®, which is not affiliated with and does not endorse this product or site.

    RedditInstagramTikTokDiscord