Parametric and polar equations appear on the AP Calculus BC exam in both multiple-choice and free-response sections. They often involve derivatives, integrals, arc length, and area calculations — sometimes in combination with other topics like vector motion.
In this RevisionDojo guide, we’ll cover:
- Key formulas for parametric equations
- Key formulas for polar equations
- Area and arc length problems
- AP-style worked examples
📚 Parametric Equations – The Basics
A parametric equation expresses xx and yy in terms of a third variable, tt (the parameter).
Example:
x(t)=t2,y(t)=3tx(t) = t^2, \quad y(t) = 3t
🔹 Derivatives for Parametric Equations
- First derivative:
dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
- Second derivative:
d2ydx2=ddt(dydx)dxdt\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left( \frac{dy}{dx} \right)}{\frac{dx}{dt}}
🔹 Arc Length for Parametric Equations
L=∫ab(dxdt)2+(dydt)2 dtL = \int_a^b \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt
📚 Polar Equations – The Basics
A polar equation represents points using radius rr and angle θ\theta.
Example:
r(θ)=2+cosθr(\theta) = 2 + \cos \theta
🔹 Slope for Polar Curves
- Convert to parametric form:
x=r(θ)cosθ,y=r(θ)sinθx = r(\theta) \cos \theta, \quad y = r(\theta) \sin \theta
- Then:
dydx=dydθdxdθ\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
🔹 Area for Polar Curves
A=12∫θ1θ2[r(θ)]2dθA = \frac{1}{2} \int_{\theta_1}^{\theta_2} \left[ r(\theta) \right]^2 d\theta
🔹 Arc Length for Polar Curves
L=∫θ1θ2(r(θ))2+(drdθ)2 dθL = \int_{\theta_1}^{\theta_2} \sqrt{\left( r(\theta) \right)^2 + \left( \frac{dr}{d\theta} \right)^2} \, d\theta
📝 AP-Style Worked Example
Problem: Find the area enclosed by one loop of r=2sinθr = 2\sin\theta.
Solution:
- Symmetry: one loop occurs from θ=0\theta = 0 to θ=π\theta = \pi
- Area formula:
A=12∫0π[2sinθ]2dθA = \frac{1}{2} \int_0^\pi \left[ 2\sin\theta \right]^2 d\theta
- Simplify:
A=2∫0πsin2θ dθA = 2 \int_0^\pi \sin^2\theta \, d\theta
- Use identity: sin2θ=1−cos(2θ)2\sin^2\theta = \frac{1 - \cos(2\theta)}{2}
- Integrate:
A=∫0π1−cos(2θ) dθ=[θ−sin(2θ)2]0πA = \int_0^\pi 1 - \cos(2\theta) \, d\theta = \left[ \theta - \frac{\sin(2\theta)}{2} \right]_0^\pi
- Evaluate: A=π−0=πA = \pi - 0 = \pi
⚠️ Common Mistakes to Avoid
- Forgetting to check intervals of integration for polar area problems
- Dropping 12\frac{1}{2} in polar area formula
- Mixing up dydx\frac{dy}{dx} formulas for parametric and polar curves
- Forgetting to square r(θ)r(\theta) when finding polar area
📊 Practice Strategy from RevisionDojo
- Memorize all arc length and area formulas for both parametric and polar
- Practice converting between polar and rectangular forms
- Drill one parametric derivative problem and one polar area problem weekly
🧭 Final Advice from RevisionDojo
Parametric and polar equation questions are predictable in structure — the AP exam often tests the same formulas in different contexts. If you can quickly recall the correct form and set up the integral properly, you’ll secure these high-value points.