LogoLogo
    Logo
    • TutoringSchools
    1. Home
    2. IB
    3. Mathematics Applications & Interpretation (Math AI)
    4. Questions

    The number of cars arriving at a junction in a particular town in any given minute between9:00am and 10:00am is historically known to follow a Poisson distribution with a mean of5.4 cars per minute. A new road is built near the town. It is claimed that the new road has decreased the number of cars arriving at the junction. To test the claim, the number of cars, X, arriving at the junction between 9:00am and 10:00am on a particular day will be recorded. The test will have the following hypotheses: H0 : the mean number of cars arriving at the junction has not changed,H1 : the mean number of cars arriving at the junction has decreased. The alternative hypothesis will be accepted if X≤300.

    Question
    HLPaper 1

    The number of cars arriving at a junction in a particular town in any given minute between9:00am and 10:00am is historically known to follow a Poisson distribution with a mean of5.4 cars per minute.

    A new road is built near the town. It is claimed that the new road has decreased the number of cars arriving at the junction.

    To test the claim, the number of cars, X, arriving at the junction between 9:00am and 10:00am on a particular day will be recorded. The test will have the following hypotheses:

    H0 : the mean number of cars arriving at the junction has not changed,
    H1 : the mean number of cars arriving at the junction has decreased.

    The alternative hypothesis will be accepted if X≤300.

    1.

    Assuming the null hypothesis to be true, state the distribution of X.

    [1]
    Verified
    Solution

    X~Po324 A1


    Note: Both distribution and mean must be seen for A1 to be awarded.


    [1 mark]

    2.

    Find the probability of a Type I error.

    [2]
    Verified
    Solution

    PX≤300 (M1)

    =0.0946831…≈0.0947 A1


    [2 marks]

    3.

    Find the probability of a Type II error, if the number of cars now follows a Poissondistribution with a mean of 4.5 cars per minute.

    [4]
    Verified
    Solution

    (mean number of cars =)4.5×60=270 (A1)

    PX>300  λ=270 (M1)


    Note:
    Award M1 for usingλ=270to evaluate a probability.


    PX≥301 OR 1-PX≤300 (M1)

    =0.0334207…≈0.0334 A1

    [4 marks]

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Applications & Interpretation (Math AI)?

    Related topics


    Footer

    General

    • About us
    • Mission
    • Tutoring
    • Blog
    • State of learning surveyNew

    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB

    • Biology (New syllabus)
    • Business Management
    • Chemistry (New syllabus)
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • View more...
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    SAT® is a trademark registered and owned by the College Board®, which is not affiliated with and does not endorse this product or site.

    RedditInstagramTikTokDiscord
    GDPR compliant