LogoLogo
    Logo
    • TutoringSchools
    1. Home
    2. IB
    3. Mathematics Analysis and Approaches (AA)
    4. Questions

    Question
    HLPaper 2

    Consider limx→0arctan(cos x)−mx2lim_{x \to 0} \frac{arctan(cos x) - m}{x^2}limx→0​x2arctan(cos x)−m​, where m∈Rm \in \mathbb{R}m∈R.

    1.

    Using l’Hôpital’s rule, show algebraically that the value of the limit is −14-\frac{1}{4}−41​.

    [6]
    Verified
    Solution
    • lim⁡x→0arctan(cos⁡x)−π4x2=(00)\lim_{x \to 0} \frac{\text{arctan}(\cos x) - \frac{\pi}{4}}{x^2} = \left(\frac{0}{0}\right)limx→0​x2arctan(cosx)−4π​​=(00​) A1

    • =lim⁡x→0−sin⁡x1+cos⁡2x⋅12x= \lim_{x \to 0} \frac{-\sin x}{1+\cos^2 x} \cdot \frac{1}{2x}=limx→0​1+cos2x−sinx​⋅2x1​ A1

    Award A1 for a correct numerator and A1 for a correct denominator.

    • Recognizes to apply l'Hôpital's rule again M1

    • =lim⁡x→0−sin⁡x1+cos⁡2x⋅12x=(00)= \lim_{x \to 0} \frac{-\sin x}{1+\cos^2 x} \cdot \frac{1}{2x} = \left(\frac{0}{0}\right)=limx→0​1+cos2x−sinx​⋅2x1​=(00​)

    Award M0 if their limit is not the indeterminate form 00\frac{0}{0}00​.

    Method #1

    • =lim⁡x→0−cos⁡x(1+cos⁡2x)−2sin⁡2xcos⁡x(1+cos⁡2x)2= \lim_{x \to 0} \frac{-\cos x (1+\cos^2 x) - 2 \sin^2 x\cos x}{(1+\cos^2 x)^2}=limx→0​(1+cos2x)2−cosx(1+cos2x)−2sin2xcosx​ A1A1

    Award A1 for a correct first term in the numerator and A1 for a correct second term in the numerator.

    Method #2

    • lim⁡x→0−cos⁡x2(1+cos⁡2x)−4xsin⁡xcos⁡x(1+cos⁡2x)\lim_{x \to 0} \frac{-\cos x}{2(1+\cos^2 x)} - \frac{4x\sin x\cos x}{(1+\cos^2 x)}limx→0​2(1+cos2x)−cosx​−(1+cos2x)4xsinxcosx​ A1A1

    Award A1 for a correct numerator and A1 for a correct denominator.

    Then

    • Substitutes x=0x=0x=0 into the correct expression to evaluate the limit A1

    The final A1 is dependent on all previous marks.

    • =−14=-\frac{1}{4}=−41​ AG

    6 marks total

    2.

    Show that a finite limit only exists for m=π4m=\frac{\pi}{4}m=4π​.

    [2]
    Verified
    Solution
    • As lim⁡x→0x2=0\lim_{x\to0}x^2 = 0limx→0​x2=0, the indeterminate form 00\frac{0}{0}00​ is required for the limit to exist. M1

    • lim⁡x→0(arctan⁡(cos⁡x)−m)=0\lim_{x\to0} \left(\arctan(\cos x) - m\right) = 0limx→0​(arctan(cosx)−m)=0

    • arctan⁡1−m=0\arctan 1 - m = 0arctan1−m=0 (as m=arctan⁡1m = \arctan 1m=arctan1) A1

    • So m=π4m = \frac{\pi}{4}m=4π​

    2 marks total

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Analysis and Approaches (AA)?

    Related topics


    Footer

    General

    • About us
    • Mission
    • Tutoring
    • Blog
    • State of learning surveyNew

    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB

    • Biology (New syllabus)
    • Business Management
    • Chemistry (New syllabus)
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • View more...
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    RedditInstagramTikTokDiscord
    GDPR compliant