LogoLogo
    Logo
    • TutoringSchools
    1. Home
    2. IB
    3. Mathematics Analysis and Approaches (AA)
    4. Questions

    Question
    HLPaper 2
    1.

    Find the roots of the equation w3=8j{w^3} = 8{\text{j}}w3=8j, w∈Cw \in \mathbb{C}w∈C. Give your answers in Cartesian form.

    [4]
    Verified
    Solution
    • This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. METHOD 1 w3=8j{w^3} = 8{\text{j}}w3=8j writing8j=8(cos(π2+2πk)+j sin(π2+2πk))8{\text{j}} = 8\left( {{\text{cos}}\left( {\frac{\pi }{2} + 2\pi k} \right) + {\text{j}}\,{\text{sin}}\left( {\frac{\pi }{2} + 2\pi k} \right)} \right)8j=8(cos(2π​+2πk)+jsin(2π​+2πk))(M1) Note: Award M1 for an attempt to find cube roots of www using modulus-argument form. cube rootsw=2(cos(π2+2πk3)+j sin(π2+2πk3))w = 2\left( {{\text{cos}}\left( {\frac{{\frac{\pi }{2} + 2\pi k}}{3}} \right) + {\text{j}}\,{\text{sin}}\left( {\frac{{\frac{\pi }{2} + 2\pi k}}{3}} \right)} \right)w=2(cos(32π​+2πk​)+jsin(32π​+2πk​))(M1) i.e. w=3+j,  −3+j,  −2jw = \sqrt 3 + {\text{j,}}\,\, - \sqrt 3 + {\text{j,}}\,\, - 2{\text{j}}w=3​+j,−3​+j,−2jA2 Note: Award *A2 *for all 3 correct, A1 for 2 correct. Note: Acceptw=1.73+jw = 1.73 + {\text{j}}w=1.73+j andw=−1.73+jw = - 1.73 + {\text{j}}w=−1.73+j.

    METHOD2 w3+(2j)3=0{w^3} + {\left( {2{\text{j}}} \right)^3} = 0w3+(2j)3=0 (w+2j)(w2−2wj−4)=0\left( {w + 2{\text{j}}} \right)\left( {{w^2} - 2w{\text{j}} - 4} \right) = 0(w+2j)(w2−2wj−4)=0M1 w=2j±122w = \frac{{2{\text{j}} \pm \sqrt {12} }}{2}w=22j±12​​M1 w=3+j,  −3+j,  −2jw = \sqrt 3 + {\text{j,}}\,\, - \sqrt 3 + {\text{j,}}\,\, - 2{\text{j}}w=3​+j,−3​+j,−2jA2 Note:AwardA2for all 3 correct,A1for 2 correct. **Note:**Acceptw=1.73+jw = 1.73 + {\text{j}}w=1.73+j andw=−1.73+jw = - 1.73 + {\text{j}}w=−1.73+j.

    [4 marks]

    2.

    One of the roots w1w_1w1​ satisfies the condition Re(w1)=0\text{Re}(w_1) = 0Re(w1​)=0. Given that w1=zz−jw_1 = \frac{z}{{z - \text{j}}}w1​=z−jz​, express zzz in the form a+bja + bja+bj, where aaa, b∈Qb \in \mathbb{Q}b∈Q.

    [3]
    Verified
    Solution

    w1=−2j{w_1} = - 2{\text{j}}w1​=−2j zz−j=−2j\frac{z}{{z - {\text{j}}}} = - 2{\text{j}}z−jz​=−2j*** M1*** z=−2j(z−j)z = - 2{\text{j}}\left( {z - {\text{j}}} \right)z=−2j(z−j) z(1+2j)=−2z\left( {1 + 2{\text{j}}} \right) = - 2z(1+2j)=−2 z=−21+2jz = \frac{{ - 2}}{{1 + 2{\text{j}}}}z=1+2j−2​A1 z=−25+45jz = - \frac{2}{5} + \frac{4}{5}{\text{j}}z=−52​+54​jA1 Note: Accept a=−25,  b=45a = - \frac{2}{5}{\text{,}}\,\,b = \frac{4}{5}a=−52​,b=54​. [3 marks]

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Analysis and Approaches (AA)?

    Related topics


    Footer

    General

    • About us
    • Mission
    • Tutoring
    • Blog
    • State of learning surveyNew

    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB

    • Biology (New syllabus)
    • Business Management
    • Chemistry (New syllabus)
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • View more...
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    SAT® is a trademark registered and owned by the College Board®, which is not affiliated with and does not endorse this product or site.

    RedditInstagramTikTokDiscord
    GDPR compliant