LogoLogo
    Logo
    • TutoringSchools
    1. Home
    2. IB
    3. Mathematics Analysis and Approaches (AA)
    4. Questions

    Question
    HLPaper 2

    Consider the differential equation

    dydx=g(yx),x>0\frac{dy}{dx} = g\left(\frac{y}{x}\right), \quad x > 0dxdy​=g(xy​),x>0

    The curve y=g(x)y = g(x)y=g(x) for x>0x > 0x>0 has a gradient function given by

    dydx=y2+3xy+2x2x2\frac{dy}{dx} = \frac{y^2 + 3xy + 2x^2}{x^2}dxdy​=x2y2+3xy+2x2​

    The curve passes through the point (1,−1)(1, -1)(1,−1).

    1.

    Use the substitution y=wxy=wxy=wx to show that

    ∫dwg(w)−w=ln⁡x+D\int \frac{dw}{g(w)-w}=\ln x+D∫g(w)−wdw​=lnx+D

    where DDD is an arbitrary constant.

    [3]
    Verified
    Solution
    • Substitute y=wxy = wxy=wx into the original equation:

      dydx=w+xdwdx=g(w)\frac{dy}{dx} = w + x\frac{dw}{dx} = g(w)dxdy​=w+xdxdw​=g(w) M1

    • Rearrange to isolate xdwdxx\frac{dw}{dx}xdxdw​:

      xdwdx=g(w)−wx\frac{dw}{dx} = g(w) - wxdxdw​=g(w)−w A1

    • Separate variables and integrate:

      ∫dwg(w)−w=∫dxx\int \frac{dw}{g(w) - w} = \int \frac{dx}{x}∫g(w)−wdw​=∫xdx​ A1

    • Integrate the right-hand side:

      ∫dwg(w)−w=ln⁡x+D\int \frac{dw}{g(w) - w} = \ln x + D∫g(w)−wdw​=lnx+D

      Where DDD is an arbitrary constant.

    3 marks total

    2.

    By using the result from part (a) or otherwise, solve the differential equation and hence show that the curve has equation

    y=xtan⁡(ln⁡(x))−1y = x \tan(\ln(x)) - 1y=xtan(ln(x))−1.

    [6]
    Verified
    Solution

    Method #1

    • Attempt to find g(w)g(w)g(w) M1

    • g(w)=w2+3w+2g(w) = w^2 + 3w + 2g(w)=w2+3w+2 A1

    • Substitute g(w)g(w)g(w) into ∫dwg(w)−w\int \frac{dw}{g(w)-w}∫g(w)−wdw​ M1

    • ∫dwg(w)−w=∫dww2+2w+2\int \frac{dw}{g(w)-w} = \int \frac{dw}{w^2 + 2w + 2}∫g(w)−wdw​=∫w2+2w+2dw​

    • Attempt to complete the square M1

    • ∫dww2+2w+2=∫dw(w+1)2+1\int \frac{dw}{w^2 + 2w + 2} = \int \frac{dw}{(w+1)^2 + 1}∫w2+2w+2dw​=∫(w+1)2+1dw​ A1

    • arctan⁡(w+1)=ln⁡x+D\arctan (w+1) = \ln x+Darctan(w+1)=lnx+D A1

    Method #2

    • Attempt to find g(w)g(w)g(w) M1

    • w+xdwdx=w2+3w+2w + x\frac{dw}{dx} = w^2 + 3w + 2w+xdxdw​=w2+3w+2 A1

    • ∫dww2+2w+2=dxx\int \frac{dw}{w^2 + 2w + 2} = \frac{dx}{x}∫w2+2w+2dw​=xdx​ M1

    • Attempt to complete the square M1

    • ∫dww2+2w+2=∫dxx\int \frac{dw}{w^2 + 2w + 2} = \int \frac{dx}{x}∫w2+2w+2dw​=∫xdx​ A1

    • arctan⁡(w+1)=ln⁡x+D\arctan(w+1) = \ln x+Darctan(w+1)=lnx+D A1

    Continuation

    • When x=1x=1x=1, w=−1w = -1w=−1 (or y=−1y=-1y=−1) and so D=0D=0D=0 M1

    • Substitute for www into their expression M1

    • arctan⁡(yx+1)=ln⁡x\arctan \left(\frac{y}{x}+1\right) = \ln xarctan(xy​+1)=lnx

    • yx+1=tan⁡(ln⁡x)\frac{y}{x}+1 = \tan \left(\ln x\right)xy​+1=tan(lnx) A1

    • So y=x(tan⁡(ln⁡x)−1)y = x\left(\tan \left(\ln x\right)-1\right)y=x(tan(lnx)−1)

    6 marks total

    3.

    Use the differential equation dydx=y2+3xy+2x2x2\frac{dy}{dx} = \frac{y^2 + 3xy + 2x^2}{x^2}dxdy​=x2y2+3xy+2x2​ to show that the points of zero gradient on the curve lie on two straight lines of the form y=mxy = mxy=mx where the values of mmm are to be determined.

    [4]
    Verified
    Solution
    • Set dydx=0\frac{dy}{dx} = 0dxdy​=0 to find stationary points: y2+3xy+2x2=0y^2 + 3xy + 2x^2 = 0y2+3xy+2x2=0 M1

    • Attempt to solve y2+3xy+2x2=0y^2 + 3xy + 2x^2 = 0y2+3xy+2x2=0 for yyy M1

    • Factorize or use quadratic formula: (y+2x)(y+x)=0(y+2x)(y+x) = 0(y+2x)(y+x)=0 or y=−3x±(3x)2−4(2)(x2)2y = \frac{-3x \pm \sqrt{(3x)^2 - 4(2)(x^2)}}{2}y=2−3x±(3x)2−4(2)(x2)​​ A1

    • Obtain solutions: y=−2xy = -2xy=−2x and y=−xy = -xy=−x A1

    Alternative method:
    • M1: State dydx=0\frac{dy}{dx} = 0dxdy​=0
    • M1: Substitute y=mxy = mxy=mx into dydx=0\frac{dy}{dx} = 0dxdy​=0
    • A1: Obtain (m+2)(m+1)=0(m+2)(m+1) = 0(m+2)(m+1)=0
    • A1: Solve m=−2,−1⇒y=−2xm = -2, -1 \Rightarrow y = -2xm=−2,−1⇒y=−2x and y=−xy = -xy=−x

    4 marks total

    4.

    The curve has a point of inflexion at x2,y2x_2, y_2x2​,y2​ where e−π2<x2<eπ2e^{-\frac{\pi}{2}} < x_2 < e^{\frac{\pi}{2}}e−2π​<x2​<e2π​. Determine the coordinates of this point of inflexion.

    [6]
    Verified
    Solution

    Method #1

    • Correct graph of y=g′(x)y=g'(x)y=g′(x) (for approximately e−π2<x<eπ2e^{-\frac{\pi}{2}}<x<e^{\frac{\pi}{2}}e−2π​<x<e2π​) with a local minimum point below the xxx-axis A2

    Award M1A1 for dydx=tan⁡(ln⁡x)+sec⁡2(ln⁡x)−1\frac{dy}{dx}= \tan(\ln x)+\sec^2(\ln x)-1dxdy​=tan(lnx)+sec2(lnx)−1

    • Attempts to find the xxx-coordinate of the local minimum point on the graph of y=g′(x)y=g'(x)y=g′(x) M1

    OR

    • Correct graph of y=g′′(x)y=g''(x)y=g′′(x) (for approximately e−π2<x<eπ2e^{-\frac{\pi}{2}}<x<e^{\frac{\pi}{2}}e−2π​<x<e2π​) showing the location of the xxx-intercept A2

    Award M1A1 for d2ydx2=sec⁡2(ln⁡x)x+2sec⁡2(ln⁡x)tan⁡(ln⁡x)x\frac{d^2y}{dx^2}=\frac{\sec^2(\ln x)}{x}+\frac{2\sec^2(\ln x)\tan(\ln x)}{x}dx2d2y​=xsec2(lnx)​+x2sec2(lnx)tan(lnx)​

    • Attempts to find the xxx-intercept M1

    THEN

    • x=0.629=e−arctan⁡(12)x=0.629 = e^{-\arctan(\frac{1}{2})}x=0.629=e−arctan(21​) A1

    • Attempts to find g(0.629)g(0.629)g(0.629)

    • The coordinates are (0.629,−0.943)(0.629,-0.943)(0.629,−0.943), (e−arctan⁡(12),−32e−arctan⁡(12))(e^{-\arctan(\frac{1}{2})},- \frac{3}{2}e^{-\arctan(\frac{1}{2})})(e−arctan(21​),−23​e−arctan(21​)) A1

    Method #2

    • Attempts implicit differentiation on dydx\frac{dy}{dx}dxdy​ to find d2ydx2\frac{d^2y}{dx^2}dx2d2y​ M1

    • d2ydx2=(2y+3x)(xdydx−y)x3\frac{d^2y}{dx^2}=\frac{(2y+3x)(x\frac{dy}{dx}-y)}{x^3}dx2d2y​=x3(2y+3x)(xdxdy​−y)​ (or equivalent)

    • d2ydx2=0⇒y=−3x2\frac{d^2y}{dx^2}=0 \Rightarrow y=-\frac{3x}{2}dx2d2y​=0⇒y=−23x​ (dydx≠yx\frac{dy}{dx}\neq\frac{y}{x}dxdy​=xy​) A1

    • Attempts to solve −3x22=xtan⁡(ln⁡x)−1-\frac{3x^2}{2}=x\tan(\ln x)-1−23x2​=xtan(lnx)−1 for xxx where e−π2<x<eπ2e^{-\frac{\pi}{2}}<x<e^{\frac{\pi}{2}}e−2π​<x<e2π​ M1

    • x=0.629=e−arctan⁡(12)x=0.629 = e^{-\arctan(\frac{1}{2})}x=0.629=e−arctan(21​) A1

    • Attempts to find g(0.629)g(0.629)g(0.629)

    • The coordinates are (0.629,−0.943)(0.629,-0.943)(0.629,−0.943), (e−arctan⁡(12),−32e−arctan⁡(12))(e^{-\arctan(\frac{1}{2})},- \frac{3}{2}e^{-\arctan(\frac{1}{2})})(e−arctan(21​),−23​e−arctan(21​)) A1

    6 marks total

    Sign up for free to view this answer

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Analysis and Approaches (AA)?

    Related topics


  1. Join 350k+ students using RevisionDojo today

    Footer

    General

    • About us
    • Mission
    • Tutoring
    • Blog
    • State of learning surveyNew

    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB

    • Biology (New syllabus)
    • Business Management
    • Chemistry (New syllabus)
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • View more...
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    SAT® is a trademark registered and owned by the College Board®, which is not affiliated with and does not endorse this product or site.

    RedditInstagramTikTokDiscord
    GDPR compliant