LogoLogo
    Logo
    • TutoringSchools
    1. Home
    2. IB
    3. Mathematics Analysis and Approaches (AA)
    4. Questions

    Question
    HLPaper 1

    Consider the curve DDD defined by y2=sin⁡(x⋅y)y^2=\sin(x\cdot y)y2=sin(x⋅y), y≠0y\neq 0y=0.

    1.

    Prove that, when dydx=0\frac{dy}{dx} = 0dxdy​=0, y=±1y = \pm 1y=±1.

    [5]
    Verified
    Solution
    • Setting dydx=0\frac{dy}{dx} = 0dxdy​=0 M1

    • ycos⁡(xy)=0y \cos (xy) = 0ycos(xy)=0

    • y≠0⇒cos⁡(xy)=0y \neq 0 \Rightarrow \cos (xy) = 0y=0⇒cos(xy)=0 A1

    • ⇒sin⁡(xy)=±1−cos⁡2(xy)=±1−0=±1\Rightarrow \sin (xy) = \pm \sqrt{1 - \cos^2 (xy)} = \pm \sqrt{1 - 0} = \pm 1⇒sin(xy)=±1−cos2(xy)​=±1−0​=±1

    • OR xy=(2n+1)π2xy= (2n+1) \frac{\pi}{2}xy=(2n+1)2π​ OR xy=π2,3π2,…xy = \frac{\pi}{2}, \frac{3\pi}{2}, \ldotsxy=2π​,23π​,… A1

    If they offer values for xyxyxy, award A1 for at least two correct values in two different 'quadrants' and no incorrect values.

    • y2=sin⁡(xy)>0y^2 = \sin (xy) > 0y2=sin(xy)>0 R1

    • ⇒y2=1\Rightarrow y^2 = 1⇒y2=1 A1

    • ⇒y=±1\Rightarrow y = \pm 1⇒y=±1 (as given)

    5 marks total

    2.

    Show that dydx=ycos⁡(xy)2y−xcos⁡(xy)\frac{dy}{dx} = \frac{y \cos (xy)}{2y - x\cos(xy)}dxdy​=2y−xcos(xy)ycos(xy)​.

    [5]
    Verified
    Solution
    • Attempt at implicit differentiation M1

    • 2ydydx=cos⁡(xy)(xdydx+y)2y\frac{dy}{dx}=\cos(xy) \left(x\frac{dy}{dx}+y \right)2ydxdy​=cos(xy)(xdxdy​+y) A1M1A1

    Award A1 for LHS, M1 for attempt at chain rule, A1 for RHS.

    • 2ydydx=xdydxcos⁡(xy)+ycos⁡(xy)2y\frac{dy}{dx}=x\frac{dy}{dx}\cos(xy)+y\cos(xy)2ydxdy​=xdxdy​cos(xy)+ycos(xy)

    • 2ydydx−xdydxcos⁡(xy)=ycos⁡(xy)2y\frac{dy}{dx}-x\frac{dy}{dx}\cos(xy)=y\cos(xy)2ydxdy​−xdxdy​cos(xy)=ycos(xy)

    • dydx(2y−xcos⁡(xy))=ycos⁡(xy)\frac{dy}{dx}\left(2y-x\cos(xy)\right)=y\cos(xy)dxdy​(2y−xcos(xy))=ycos(xy) M1

    Award M1 for collecting derivatives and factorising.

    • dydx=ycos⁡(xy)2y−xcos⁡(xy)\frac{dy}{dx}=\frac{y\cos(xy)}{2y-x\cos(xy)}dxdy​=2y−xcos(xy)ycos(xy)​ AG

    5 marks total

    3.

    Hence find the coordinates of all points on DDD, for 0<x<4π0 < x < 4\pi0<x<4π, where dydx=0\frac{dy}{dx} = 0dxdy​=0.

    [5]
    Verified
    Solution
    • y=±1⇒1=sin⁡(±x)⇒sin⁡x=±1y = \pm 1 \Rightarrow 1 = \sin (\pm x) \Rightarrow \sin x = \pm 1y=±1⇒1=sin(±x)⇒sinx=±1

    Method #1

    • OR y=±1⇒0=cos⁡(±x)⇒cos⁡x=0y = \pm 1 \Rightarrow 0 = \cos (\pm x) \Rightarrow \cos x = 0y=±1⇒0=cos(±x)⇒cosx=0 M1

    • (sin⁡x=1⇒(π2,1))\left(\sin x = 1 \Rightarrow \left(\frac{\pi}{2}, 1\right)\right)(sinx=1⇒(2π​,1)), (sin⁡x=−1⇒(3π2,−1))\left(\sin x = -1 \Rightarrow \left(\frac{3\pi}{2}, -1\right)\right)(sinx=−1⇒(23π​,−1)), (sin⁡x=−1⇒(7π2,−1))\left(\sin x = -1 \Rightarrow \left(\frac{7\pi}{2}, -1\right)\right)(sinx=−1⇒(27π​,−1)) A1A1

    Allow 'coordinates' expressed as x=π2,y=1x = \frac{\pi}{2}, y = 1x=2π​,y=1 for example.

    Each of the A marks may be awarded independently and are not dependent on (M1) being awarded.

    Mark only the candidate's first two attempts for each case of sin⁡x\sin xsinx.

    5 marks total

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Analysis and Approaches (AA)?

    Related topics


  1. Footer

    General

    • About us
    • Mission
    • Tutoring
    • Blog
    • State of learning surveyNew

    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB

    • Biology (New syllabus)
    • Business Management
    • Chemistry (New syllabus)
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • View more...
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    RedditInstagramTikTokDiscord
    GDPR compliant