LogoLogo
    Logo
    • TutoringSchools
    1. Home
    2. IB
    3. Mathematics Analysis and Approaches (AA)
    4. Questions

    Question
    HLPaper 2

    A Candy Store advertises free gifts to customers that collect three vouchers. The vouchers are placed at random into 10% of all candy bars sold at this store. Lisa buys some of these bars and she opens them one at a time to see if they contain a voucher. Let P(X=n)P(X = n)P(X=n) be the probability that Lisa obtains her third voucher on the nthn^{th}nth bar opened. (It is assumed that the probability that a candy bar contains a voucher stays at 10% throughout the question.)

    It is given that P(X=n)=n2+an+b2000×0.9n−3P(X = n) = \frac{{n^2 + an + b}}{{2000}} \times 0.9^{n - 3}P(X=n)=2000n2+an+b​×0.9n−3 for n⩾3,n∈Nn \geqslant 3, n \in \mathbb{N}n⩾3,n∈N.

    Lisa’s mother goes to the store and buys xxx candy bars. She takes the bars home for Lisa to open.

    1.

    Show that P(X=3)=0.001{\text{P}}(X = 3) = 0.001P(X=3)=0.001 and P(X=4)=0.0027{\text{P}}(X = 4) = 0.0027P(X=4)=0.0027.

    [3]
    Verified
    Solution
    • This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. P(X = 3) = (0.1)3{(0.1)^3}(0.1)3 A1 =0.001= 0.001=0.001 AG P(X = 4) = P(VV̅V) + P(V̅VVV) + P(̅VVVV) =3×(0.1)3×0.9= 3 \times {(0.1)^3} \times 0.9=3×(0.1)3×0.9 (or equivalent) A1 =0.0027= 0.0027=0.0027 AG [3 marks]
    2.

    Find the values of the constants aaa and bbb.

    [5]
    Verified
    Solution

    METHOD 1 attempting to form equations in aaa and bbb M1 9+3a+b2000=11000 (3a+b=−7)\frac{{9 + 3a + b}}{{2000}} = \frac{1}{{1000}}{\text{ }}(3a + b = - 7)20009+3a+b​=10001​ (3a+b=−7) A1 16+4a+b2000×910=2710 000 (4a+b=−10)\frac{{16 + 4a + b}}{{2000}} \times \frac{9}{{10}} = \frac{{27}}{{10\,000}}{\text{ }}(4a + b = - 10)200016+4a+b​×109​=1000027​ (4a+b=−10) A1 attempting to solve simultaneously (M1) a=−3, b=2a = - 3,{\text{ }}b = 2a=−3, b=2 A1 METHOD 2 P(X=n)=(n−12)×0.13×0.9n−3P(X = n) = \left({\begin{matrix}{n - 1}\\2\end{matrix}}\right) \times {0.1^3} \times {0.9^{n - 3}}P(X=n)=(n−12​)×0.13×0.9n−3 M1 =(n−1)(n−2)2000×0.9n−3= \frac{{(n - 1)(n - 2)}}{{2000}} \times {0.9^{n - 3}}=2000(n−1)(n−2)​×0.9n−3 (M1)A1 =n2−3n+22000×0.9n−3= \frac{{{n^2} - 3n + 2}}{{2000}} \times {0.9^{n - 3}}=2000n2−3n+2​×0.9n−3 A1 a=−3,b=2a = - 3,b = 2a=−3,b=2 A1

    **Note: **Condone the absence of 0.9n−30.9^{n - 3}0.9n−3 in the determination of the values of aaa and bbb.

    [5 marks]

    3.

    Deduce that P(X=n)P(X=n−1)=0.9(n−1)n−3{\frac{{P(X = n)}}{{P(X = n - 1)}} = \frac{{0.9(n - 1)}}{{n - 3}}}P(X=n−1)P(X=n)​=n−30.9(n−1)​ for n>3{n > 3}n>3.

    [4]
    Verified
    Solution

    METHOD 1 EITHER P(X=n)=n2−3n+22000×0.9n−3{P}(X = n) = \frac{{n^2 - 3n + 2}}{{2000}} \times {0.9^{n - 3}}P(X=n)=2000n2−3n+2​×0.9n−3 (M1) OR P(X=n)=(n−12)×0.13×0.9n−3{P}(X = n) = \left( {\begin{matrix} {n - 1} \\ 2 \end{matrix}} \right) \times {0.1^3} \times {0.9^{n - 3}}P(X=n)=(n−12​)×0.13×0.9n−3 (M1) THEN =(n−1)(n−2)2000×0.9n−3{ = \frac{{(n - 1)(n - 2)}}{{2000}} \times {0.9^{n - 3}}}=2000(n−1)(n−2)​×0.9n−3 A1 P(X=n−1)=(n−2)(n−3)2000×0.9n−4{P}(X = n - 1) = \frac{{(n - 2)(n - 3)}}{{2000}} \times {0.9^{n - 4}}P(X=n−1)=2000(n−2)(n−3)​×0.9n−4 A1 P(X=n)P(X=n−1)=(n−1)(n−2)(n−2)(n−3)×0.9{\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{(n - 1)(n - 2)}}{{(n - 2)(n - 3)}} \times 0.9}P(X=n−1)P(X=n)​=(n−2)(n−3)(n−1)(n−2)​×0.9 A1 =0.9(n−1)n−3{ = \frac{{0.9(n - 1)}}{{n - 3}}}=n−30.9(n−1)​ AG METHOD 2 P(X=n)P(X=n−1)=n2−3n+22000×0.9n−3(n−1)2−3(n−1)+22000×0.9n−4{\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{\frac{{n^2 - 3n + 2}}{{2000}} \times {{0.9}^{n - 3}}}}{{\frac{{{{(n - 1)}^2} - 3(n - 1) + 2}}{{2000}} \times {{0.9}^{n - 4}}}}}P(X=n−1)P(X=n)​=2000(n−1)2−3(n−1)+2​×0.9n−42000n2−3n+2​×0.9n−3​ (M1) =0.9(n2−3n+2)(n2−5n+6){ = \frac{{0.9({n^2} - 3n + 2)}}{{({n^2} - 5n + 6)}}}=(n2−5n+6)0.9(n2−3n+2)​ A1A1

    **Note: **Award ***A1 ***for a correct numerator and ***A1 ***for a correct denominator.

    =0.9(n−1)(n−2)(n−2)(n−3){ = \frac{{0.9(n - 1)(n - 2)}}{{(n - 2)(n - 3)}}}=(n−2)(n−3)0.9(n−1)(n−2)​ A1 =0.9(n−1)n−3{ = \frac{{0.9(n - 1)}}{{n - 3}}}=n−30.9(n−1)​ AG [4 marks]

    4.

    (i) Hence show that XXX has two modes m1m_1m1​ and m2m_2m2​. (ii) State the values of m1m_1m1​ and m2m_2m2​.

    [5]
    Verified
    Solution

    (i) attempting to solve 0.9(n−1)n−3=1\frac{{0.9(n - 1)}}{{n - 3}} = 1n−30.9(n−1)​=1 for nnn M1

    n=21n = 21n=21 A1

    0.9(n−1)n−3<1⇒n>21\frac{{0.9(n - 1)}}{{n - 3}} < 1 \Rightarrow n > 21n−30.9(n−1)​<1⇒n>21 R1

    0.9(n−1)n−3>1⇒n<21\frac{{0.9(n - 1)}}{{n - 3}} > 1 \Rightarrow n < 21n−30.9(n−1)​>1⇒n<21 R1

    XXX has two modes AG

    **Note: **Award **R1R1 **for a clearly labelled graphical representation of the two inequalities (using P(X=n)P(X=n−1)\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}}P(X=n−1)P(X=n)​).

    (ii) the modes are 20 and 21 A1

    [5 marks]

    Sign up for free to view this answer

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Analysis and Approaches (AA)?

    Related topics


    Footer

    General

    • About us
    • Mission
    • Tutoring
    • Blog
    • State of learning surveyNew

    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB

    • Biology (New syllabus)
    • Business Management
    • Chemistry (New syllabus)
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • View more...
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    SAT® is a trademark registered and owned by the College Board®, which is not affiliated with and does not endorse this product or site.

    RedditInstagramTikTokDiscord
    GDPR compliant