LogoLogo
    Logo
    • TutoringSchools
    1. Home
    2. IB
    3. Mathematics Analysis and Approaches (AA)
    4. Questions

    Consider the differential equation $z^2 \frac{\mathrm{d}w}{\mathrm{d}z} = w^2 - 2z^2$ for $z > 0$ and $w > 2z$.

    Question
    HLPaper 2

    Consider the differential equation z2dwdz=w2−2z2z^2 \frac{\mathrm{d}w}{\mathrm{d}z} = w^2 - 2z^2z2dzdw​=w2−2z2 for z>0z > 0z>0 and w>2zw > 2zw>2z.

    It is given that w=3w = 3w=3 when z=1z = 1z=1.

    1.

    Use Euler's technique, with a step length of 0.1, to find an approximate value of www when z=1.5z = 1.5z=1.5.

    [4]
    Verified
    Solution
    • Attempt to use Euler's technique M1

    • Correct formulation of Euler's method: zn+1=zn+0.1z_{n+1} = z_{n} + 0.1zn+1​=zn​+0.1 wn+1=wn+0.1×dwdzw_{n+1} = w_{n} + 0.1 \times \frac{\mathrm{d}w}{\mathrm{d}z}wn+1​=wn​+0.1×dzdw​, where dwdz=w2−2z2z2\frac{\mathrm{d}w}{\mathrm{d}z} = \frac{w^2 - 2z^2}{z^2}dzdw​=z2w2−2z2​ A1

    • Correct intermediate www-values: 3.7,4.63140...,5.92098...,7.79542...3.7, 4.63140..., 5.92098..., 7.79542...3.7,4.63140...,5.92098...,7.79542... A1

    A1 for any two correct www-values seen

    • Final answer: w=10.7w = 10.7w=10.7 A1

    For the final A1, the value 10.7 must be the last value in a table or a list, or be given as a final answer, not just embedded in a table which has further lines.

    4 marks total

    2.

    Use the substitution w=vzw = vzw=vz to show that zdvdz=v2−v−2z \frac{\mathrm{d}v}{\mathrm{d}z} = v^2 - v - 2zdzdv​=v2−v−2.

    [3]
    Verified
    Solution
    • w=vz⇒dwdz=v+zdvdzw=vz \Rightarrow \frac{\mathrm{d}w}{\mathrm{d}z}=v+z \frac{\mathrm{d}v}{\mathrm{d}z}w=vz⇒dzdw​=v+zdzdv​ 1 mark

    • Replacing www with vzvzvz and dwdz\frac{\mathrm{d}w}{\mathrm{d}z}dzdw​ with v+zdvdzv+z \frac{\mathrm{d}v}{\mathrm{d}z}v+zdzdv​ in the original equation:

      z2dwdz=w2−2z2⇒z2(v+zdvdz)=v2z2−2z2z^2 \frac{\mathrm{d}w}{\mathrm{d}z}=w^2-2z^2 \Rightarrow z^2\left(v+z \frac{\mathrm{d}v}{\mathrm{d}z}\right)=v^2z^2-2z^2z2dzdw​=w2−2z2⇒z2(v+zdzdv​)=v2z2−2z2 1 mark

    • v+zdvdz=v2−2(since z>0)v+z \frac{\mathrm{d}v}{\mathrm{d}z}=v^2-2 \quad(\text{since } z>0)v+zdzdv​=v2−2(since z>0)

    • zdvdz=v2−v−2z \frac{\mathrm{d}v}{\mathrm{d}z}=v^2-v-2zdzdv​=v2−v−2 1 mark

    3 marks total

    3.

    By solving the differential equation, show that w=8z+z44−z3w = \frac{8z + z^4}{4 - z^3}w=4−z38z+z4​.

    [8]
    Verified
    Solution
    • Attempt to separate variables www and zzz: M1

      ∫dww2−2z2=∫dzz2\int \frac{\mathrm{d} w}{w^{2}-2z^2}=\int \frac{\mathrm{d} z}{z^2}∫w2−2z2dw​=∫z2dz​

    • Substitute v=wzv = \frac{w}{z}v=zw​ (seen anywhere): M1

      ∫dvv2−1−2=∫dzz\int \frac{\mathrm{d} v}{v^{2}-1-2}=\int \frac{\mathrm{d} z}{z}∫v2−1−2dv​=∫zdz​

    • Express in partial fraction form: M1

      1(v−2)(v+1)=13(1v−2−1v+1)\frac{1}{(v-2)(v+1)} = \frac{1}{3}\left(\frac{1}{v-2}-\frac{1}{v+1}\right)(v−2)(v+1)1​=31​(v−21​−v+11​)

    • Integrate both sides: A1

      13(ln⁡∣v−2∣−ln⁡∣v+1∣)=ln⁡∣z∣+c\frac{1}{3}(\ln |v-2|-\ln |v+1|)=\ln |z| + c31​(ln∣v−2∣−ln∣v+1∣)=ln∣z∣+c

    Condone absence of modulus signs throughout.

    Method #1

    • Attempt to find ccc using z=1,w=3,v=3z=1, w=3, v=3z=1,w=3,v=3: M1

      c=13ln⁡14c=\frac{1}{3} \ln \frac{1}{4}c=31​ln41​

    • Express both sides as a single logarithm: A1

      ln⁡∣v−2v+1∣=ln⁡(∣z∣34)\ln \left|\frac{v-2}{v+1}\right|=\ln \left(\frac{|z|^{3}}{4}\right)ln​v+1v−2​​=ln(4∣z∣3​)

    Method #2

    • Express both sides as a single logarithm:

      ln⁡∣v−2v+1∣=ln⁡(A∣z∣3)\ln \left|\frac{v-2}{v+1}\right|=\ln \left(A|z|^{3}\right)ln​v+1v−2​​=ln(A∣z∣3)

    • Attempt to find AAA using z=1,w=3,v=3z=1, w=3, v=3z=1,w=3,v=3:

      A=14A=\frac{1}{4}A=41​

    Continuation

    • Simplify: A1

      ∣v−2v+1∣=14z3\left|\frac{v-2}{v+1}\right|=\frac{1}{4} z^{3}​v+1v−2​​=41​z3 (since z>0z>0z>0)

    • Substitute back v=wzv=\frac{w}{z}v=zw​:

      wz−2wz+1=14z3\frac{\frac{w}{z}-2}{\frac{w}{z}+1}=\frac{1}{4} z^{3}zw​+1zw​−2​=41​z3 (since w>2zw>2zw>2z)

    • Attempt to make www the subject: M1

      w−z3w4=2z+z44w-\frac{z^{3} w}{4}=2 z+\frac{z^{4}}{4}w−4z3w​=2z+4z4​

    • Final answer: A1

      w=8z+z44−z3w=\frac{8 z+z^{4}}{4-z^{3}}w=4−z38z+z4​

    8 marks total

    4.

    Find the actual value of www when z=1.5z = 1.5z=1.5.

    [1]
    Verified
    Solution
    • w(1.5)=27.3w(1.5) = 27.3w(1.5)=27.3 A1

    1 mark total

    Remember to provide your answer to 3 significant figures

    Sign up for free to view this answer

    5.

    Using the graph of w=8z+z44−z3w = \frac{8z + z^4}{4 - z^3}w=4−z38z+z4​, suggest a reason why the approximation given by Euler's technique in part is not a good estimate to the actual value of www at z=1.5z = 1.5z=1.5.

    [1]
    Verified
    Solution
    • The gradient changes rapidly during the interval considered. R1

    OR

    • The curve has a vertical asymptote at z=43(=1.5874…)z=\sqrt[3]{4}(=1.5874 \ldots)z=34​(=1.5874…). R1

    1 mark total

    Only one of these reasons is required for the full mark.

    Sign up for free to view this answer

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Analysis and Approaches (AA)?

    Related topics


    Footer

    General

    • About us
    • Mission
    • Tutoring
    • Blog
    • State of learning surveyNew

    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB

    • Biology (New syllabus)
    • Business Management
    • Chemistry (New syllabus)
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • View more...
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    SAT® is a trademark registered and owned by the College Board®, which is not affiliated with and does not endorse this product or site.

    RedditInstagramTikTokDiscord
    GDPR compliant