LogoLogo
    Logo
    • TutoringSchools
    1. Home
    2. IB
    3. Mathematics Analysis and Approaches (AA)
    4. Questions

    The points $A(5, -2, 5)$, $B(5, 4, -1)$, $C(-1, -2, -1)$ and $D(7, -4, -3)$ are the vertices of a right-pyramid.The line $L$ passes through the point $D$ and is perpendicular to plane $\Phi$

    Question
    HLPaper 2

    The points A(5,−2,5)A(5, -2, 5)A(5,−2,5), B(5,4,−1)B(5, 4, -1)B(5,4,−1), C(−1,−2,−1)C(-1, -2, -1)C(−1,−2,−1) and D(7,−4,−3)D(7, -4, -3)D(7,−4,−3) are the vertices of a right-pyramid.The line LLL passes through the point DDD and is perpendicular to plane Φ\PhiΦ

    1.

    Find the vectors AB⃗{\vec{AB}}AB and AC⃗{\vec{AC}}AC.

    [2]
    Verified
    Solution
    • This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

    AB→=(0,6,−6)=6(0,1,−1)\overrightarrow{AB} = (0, 6, -6) = 6(0, 1, -1)AB=(0,6,−6)=6(0,1,−1) A1 AC→=(−6,0,−6)=6(−1,0,−1)\overrightarrow{AC} = (-6, 0, -6) = 6(-1, 0, -1)AC=(−6,0,−6)=6(−1,0,−1) A1

    [2 marks]

    2.

    Show that the Cartesian equation of the plane Φ\PhiΦ that contains the triangle ABCABCABC is −x+y+z=−2-x+y+z=-2−x+y+z=−2.

    [3]
    Verified
    Solution

    attempts to find a vector normal to Φ{\Phi}Φ M1 for example,AB→×AC→=(−363636)=36(−111){\overrightarrow{AB}} \times {\overrightarrow{AC}} = \begin{pmatrix}-36\\ 36\\ 36\end{pmatrix} = 36\begin{pmatrix}-1\\ 1\\ 1\end{pmatrix}AB×AC=​−363636​​=36​−111​​ leading to A1 a vector normal to Φ{\Phi}Φ is n=(−111){\mathbf{n}} = \begin{pmatrix}-1\\ 1\\ 1\end{pmatrix}n=​−111​​

    EITHER substitutes (5−2−5){\begin{pmatrix}5\\ -2\\ -5\end{pmatrix}}​5−2−5​​ (or (54−1){\begin{pmatrix}5\\ 4\\ -1\end{pmatrix}}​54−1​​ or (−1−2−1){\begin{pmatrix}-1\\ -2\\ -1\end{pmatrix}}​−1−2−1​​) into −x+y+z=d{-x+y+z=d}−x+y+z=d and attempts to find the value of d{d}d for example,d=−5−2+5=−2{d=-5-2+5 = -2}d=−5−2+5=−2 M1

    OR attempts to user⋅n=a⋅n{\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}}r⋅n=a⋅n M1 for example,(xyz)⋅(−111)=(5−25)⋅(−111){\begin{pmatrix}x\\ y\\ z\end{pmatrix}} \cdot \begin{pmatrix}-1\\ 1\\ 1\end{pmatrix} = \begin{pmatrix}5\\ -2\\ 5\end{pmatrix} \cdot \begin{pmatrix}-1\\ 1\\ 1\end{pmatrix}​xyz​​⋅​−111​​=​5−25​​⋅​−111​​

    THEN leading to the Cartesian equation of Φ{\Phi}Φ as −x+y+z=−2{-x+y+z=-2}−x+y+z=−2 AG

    [3 marks]

    3.

    Find a vector equation of the line LLL.

    [1]
    Verified
    Solution

    r=(7−4−3)+λ(−111)r = \left( \begin{array}{ccc} 7 \\ -4 \\ -3 \end{array} \right) + \lambda \left( \begin{array}{ccc} -1 \\ 1 \\ 1 \end{array} \right)r=​7−4−3​​+λ​−111​​, λ∈R\lambda \in \mathbb{R}λ∈R

    A1

    [1 mark]

    4.

    Hence determine the minimum distance, dmind_{\text{min}}dmin​, from DDD to Φ\PhiΦ.

    [4]
    Verified
    Solution

    The normal to the plane is

    • n=(−111)\mathbf{n}=\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}n=​−111​​

    substitutesx=7−λ,y=−4+λ,z=−3+λ{x=7-\lambda,y=-4+\lambda,z=-3+\lambda}x=7−λ,y=−4+λ,z=−3+λ into −x+y+z=−2{-x+y+z=-2}−x+y+z=−2 (M1) −(7−λ)+(−4+λ)+(−3+λ)=−2-(7-\lambda)+(-4+\lambda)+(-3+\lambda)=-2−(7−λ)+(−4+λ)+(−3+λ)=−2 3λ=123\lambda=123λ=12 A1 shows a correct calculation for finding ∣4(−111)∣{\left|4\begin{pmatrix}-1\\1\\1\end{pmatrix}\right|}​4​−111​​​ M1 dmin=43d_{\text{min}}=4\sqrt{3}dmin​=43​ A1

    [4 marks]

    Sign up for free to view this answer

    5.

    Use a vector method to show that BA^C=60∘B\hat{A}C = 60^\circBA^C=60∘.

    [3]
    Verified
    Solution

    attempts to use cos⁡BA^C=AB→⋅AC→∣AB→∣⋅∣AC→∣\cos B\hat{A}C = \frac{{\overrightarrow{AB} \cdot \overrightarrow{AC}}}{{|\overrightarrow{AB}| \cdot |\overrightarrow{AC}|}}cosBA^C=∣AB∣⋅∣AC∣AB⋅AC​ (M1)

    =∣−66−6∣⋅∣−60−6∣72×72= \frac{{|-6 \quad 6 \quad -6| \cdot |-6 \quad 0 \quad -6|}}{{\sqrt{72} \times \sqrt{72}}}=72​×72​∣−66−6∣⋅∣−60−6∣​

    (A1) =12= \frac{1}{2}=21​ (A1) so BA^C=60°B\hat A C = 60°BA^C=60° AG

    [3 marks]

    Sign up for free to view this answer

    6.

    Find the volume of right-pyramid ABCD{ABCD}ABCD.

    [4]
    Verified
    Solution

    let the area of triangle ABCABCABC be AAA

    EITHER attempts to find A=12∣AB⃗×AC⃗∣A = \frac{1}{2}\left|\vec{AB} \times \vec{AC}\right|A=21​​AB×AC​, for example M1 A=12∣(−363636)∣A = \frac{1}{2} \left|\begin{pmatrix} -36 \\ 36 \\ 36 \end{pmatrix}\right|A=21​​​−363636​​​

    OR attempts to find 12∣AB⃗∣∣AC⃗∣sin⁡θ\frac{1}{2}\left|\vec{AB}\right|\left|\vec{AC}\right| \sin \theta21​​AB​​AC​sinθ, for example M1 A=12×62×62×32A = \frac{1}{2} \times 6 \sqrt{2} \times 6 \sqrt{2} \times \frac{\sqrt{3}}{2}A=21​×62​×62​×23​​ (where sin⁡π3=32\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}sin3π​=23​​)

    THEN A=183A = 18 \sqrt{3}A=183​ A1 uses V=13AhV = \frac{1}{3}A hV=31​Ah where AAA is the area of triangle ABCABCABC and h=dminh = d_{\text{min}}h=dmin​ M1 V=13×183×43V = \frac{1}{3} \times 18 \sqrt{3} \times 4 \sqrt{3}V=31​×183​×43​ =72= 72=72 A1

    [4 marks]

    Sign up for free to view this answer

    Still stuck?

    Get step-by-step solutions with Jojo AI

    FreeJojo AI

    Want more practice questions for Mathematics Analysis and Approaches (AA)?

    Related topics


  1. Footer

    General

    • About us
    • Mission
    • Tutoring
    • Blog
    • State of learning surveyNew

    • Trustpilot
    • Contact us
    • Join us We're hiring!

    Features

    • Jojo AI
    • Questionbank
    • Study notes
    • Flashcards
    • Test builder
    • Exam mode
    • Coursework
    • IB grade calculator

    Legal

    • Terms and conditions
    • Privacy policy
    • Cookie policy
    • Trust Center

    IB

    • Biology (New syllabus)
    • Business Management
    • Chemistry (New syllabus)
    • Chinese A Lang & Lit
    • Chinese B
    • Computer Science (CS)
    • Design Technology (DT)
    • Digital Society (DS)
    • Economics
    • English B
    • View more...
    Logo

    © 2022 - 2025 RevisionDojo (MyDojo Inc)

    RevisionDojo was developed independently of the IBO and as such is not endorsed by it in any way.

    RedditInstagramTikTokDiscord
    GDPR compliant