Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Verify the memoryless property by showing P(X>7∣X>3)=P(X>4)P(X>7\mid X>3)=P(X>4)P(X>7∣X>3)=P(X>4) for X∼Exp(4)X\sim\mathrm{Exp}(4)X∼Exp(4).
Compute the variance Var(X)\mathrm{Var}(X)Var(X) when X∼Exp(4)X\sim\mathrm{Exp}(4)X∼Exp(4).
Consider the probability density function f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x for x>0x>0x>0. Find P(X≤3)P(X \le 3)P(X≤3).
Let XXX be a continuous random variable with pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x for x>0x>0x>0. Calculate P(X>0.5)P(X>0.5)P(X>0.5).
Determine the expected value E(X)E(X)E(X) for XXX with pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x, x>0x>0x>0.
Let XXX be a continuous random variable with probability density function f(x)=4e−4xf(x) = 4e^{-4x}f(x)=4e−4x for x>0x > 0x>0. Find P(2<X<5)P(2 < X < 5)P(2<X<5).
Find the conditional probability density function (PDF) of XXX given X>4X > 4X>4, if X∼Exp(4)X \sim \text{Exp}(4)X∼Exp(4).
For a random variable with probability density function f(x)=λe−λxf(x)=\lambda e^{-\lambda x}f(x)=λe−λx, x>0x>0x>0, find λ\lambdaλ such that P(X<2)=0.8P(X<2)=0.8P(X<2)=0.8.
Find the 90th percentile x0.9x_{0.9}x0.9 of XXX with pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x, x>0x>0x>0.
Given f(x)=5e−5xf(x)=5e^{-5x}f(x)=5e−5x for x>0x>0x>0, the hazard function is h(x)=f(x)1−F(x)h(x)=\frac{f(x)}{1-F(x)}h(x)=1−F(x)f(x). Compute h(1)h(1)h(1).
Find the median mmm of XXX with pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x, x>0x>0x>0, such that P(X≤m)=0.5P(X\le m)=0.5P(X≤m)=0.5.
Let Y=3XY=3XY=3X where X∼Exp(4)X \sim \mathrm{Exp}(4)X∼Exp(4).
Find the probability density function (pdf) of YYY.
Compute P(Y>10)P(Y>10)P(Y>10).
Previous
Question Type 2: Finding the standard deviation of a discrete random variable
Next
Question Type 4: Finding the median for a given PDF