Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
For the same pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x, x>0x>0x>0, find P(X≤3)P(X\le3)P(X≤3).
Let XXX be a continuous random variable with pdf f(x)=4e−4x, for x>0.f(x)=4e^{-4x}, \text{ for }x>0.f(x)=4e−4x, for x>0. Calculate P(X>12)P(X>12)P(X>12).
Determine the expected value E(X)E(X)E(X) for XXX with pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x, x>0x>0x>0.
With pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x for x>0x>0x>0, compute P(2<X<5)P(2<X<5)P(2<X<5).
Compute the variance Var(X)\mathrm{Var}(X)Var(X) when X∼Exp(4)X\sim\mathrm{Exp}(4)X∼Exp(4).
Find the median mmm of XXX with pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x, x>0x>0x>0, such that P(X≤m)=0.5P(X\le m)=0.5P(X≤m)=0.5.
Find the 90th percentile x0.9x_{0.9}x0.9 of XXX with pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x, x>0x>0x>0.
Verify the memoryless property by showing P(X>7∣X>3)=P(X>4)P(X>7\mid X>3)=P(X>4)P(X>7∣X>3)=P(X>4) for X∼Exp(4)X\sim\mathrm{Exp}(4)X∼Exp(4).
For a random variable with pdf f(x)=λe−λxf(x)=\lambda e^{-\lambda x}f(x)=λe−λx, x>0x>0x>0, find λ\lambdaλ such that P(X<2)=0.8P(X<2)=0.8P(X<2)=0.8.
Let Y=3XY=3XY=3X where X∼Exp(4)X\sim\mathrm{Exp}(4)X∼Exp(4). (a) Find the pdf of YYY. (b) Then compute P(Y>10)P(Y>10)P(Y>10).
Find the conditional pdf of XXX given X>4X>4X>4 if X∼Exp(4)X\sim\mathrm{Exp}(4)X∼Exp(4).
Given f(x)=5e−5xf(x)=5e^{-5x}f(x)=5e−5x for x>0x>0x>0, the hazard function is h(x)=f(x)/(1−F(x))h(x)=f(x)/(1-F(x))h(x)=f(x)/(1−F(x)). Compute h(1)h(1)h(1).
Previous
Question Type 2: Finding the standard deviation of a discrete random variable
Next
Question Type 4: Finding the median for a given PDF