Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
For a random variable XXX with probability density function f(x)=32(2−x)1/2, 1<x<2,f(x)=\frac{3}{2}(2-x)^{1/2}, \, 1<x<2,f(x)=23(2−x)1/2,1<x<2, find its median.
Find mmm such that P(X≤m)=0.5P(X\le m)=0.5P(X≤m)=0.5 for the distribution with pdf f(x)=32(2−x)1/2, 1<x<2.f(x)=\frac{3}{2}(2-x)^{1/2},\,1<x<2.f(x)=23(2−x)1/2,1<x<2.
Show that the median of the distribution with pdf f(x)=4x3for0<x<1f(x) = 4x^3 \quad \text{for} \quad 0 < x < 1f(x)=4x3for0<x<1 is m=(1/2)1/4m=(1/2)^{1/4}m=(1/2)1/4.
For a continuous random variable XXX with density f(x)=4x3 for 0<x<1,f(x)=4x^3 \text{ for } 0 < x < 1,f(x)=4x3 for 0<x<1, determine the value mmm such that P(X≤m)=0.5P(X \le m)=0.5P(X≤m)=0.5.
A continuous random variable has density f(x)=322−x for 1≤x≤2.f(x)=\frac{3}{2}\sqrt{2-x} \text{ for }1\le x\le2.f(x)=232−x for 1≤x≤2. Determine its median mmm.
Given the pdf f(x)=32(2−x)1/2f(x)=\frac{3}{2}(2-x)^{1/2}f(x)=23(2−x)1/2 for 1≤x<21\le x<21≤x<2, show that the median is m=2−2−2/3m=2-2^{-2/3}m=2−2−2/3.
Find the median mmm of the random variable with probability density function f(x)=4x3for 0<x<1.f(x)=4x^3 \quad \text{for } 0<x<1.f(x)=4x3for 0<x<1.
Determine the median mmm of the random variable with pdf f(x)=322−x for 1<x<2.f(x)=\frac{3}{2}\sqrt{2-x} \text{ for } 1<x<2.f(x)=232−x for 1<x<2.
Given the probability density function f(x)=4x3for 0<x<1f(x)=4x^3 \quad \text{for } 0 < x < 1f(x)=4x3for 0<x<1, find the value mmm satisfying ∫0mf(x) dx=12\int_0^m f(x)\,dx = \frac{1}{2}∫0mf(x)dx=21.
A continuous random variable has probability density function f(x)=4x3f(x)=4x^3f(x)=4x3 for 0<x<10<x<10<x<1. Compute its median.
Let XXX have density f(x)=4x3 for 0<x<1f(x)=4x^3 \text{ for } 0<x<1f(x)=4x3 for 0<x<1. Find the median of XXX.
Previous
Question Type 3: Finding the probability for a given PDF
Next
Question Type 5: Finding the mode for a given PDF