Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
A discrete random variable XXX takes values 0 and 2 with equal probability. Find the standard deviation of XXX.
Let XXX be uniformly distributed on 0,1,2\\{0,1,2\\}0,1,2. Find the standard deviation of XXX.
The pmf of XXX is P(X=1)=0.2P(X=1)=0.2P(X=1)=0.2, P(X=2)=0.5P(X=2)=0.5P(X=2)=0.5, P(X=3)=0.3P(X=3)=0.3P(X=3)=0.3. Calculate the standard deviation of XXX.
The pmf of XXX is P(X=1)=1/6P(X=1)=1/6P(X=1)=1/6, P(X=2)=1/3P(X=2)=1/3P(X=2)=1/3, P(X=3)=1/2P(X=3)=1/2P(X=3)=1/2. Find the variance of XXX and its standard deviation.
A random variable XXX has pmf P(X=−1)=0.2P(X=-1)=0.2P(X=−1)=0.2, P(X=0)=0.5P(X=0)=0.5P(X=0)=0.5, P(X=2)=0.3P(X=2)=0.3P(X=2)=0.3. Compute Var(X)\mathrm{Var}(X)Var(X).
A random variable XXX has pmf P(X=x)=kxP(X=x)=kxP(X=x)=kx for x=1,2,3,4x=1,2,3,4x=1,2,3,4. Find kkk and then the standard deviation of XXX.
Let XXX have pmf P(X=x)=c/x2P(X=x)=c/x^2P(X=x)=c/x2 for x=1,2,3x=1,2,3x=1,2,3. Determine ccc and compute Var(X)\mathrm{Var}(X)Var(X).
A discrete random variable XXX has pmf P(X=x)=611⋅1xP(X=x)=\tfrac{6}{11}\cdot\tfrac{1}{x}P(X=x)=116⋅x1 for x=1,2,3x=1,2,3x=1,2,3. Find Var(X)\mathrm{Var}(X)Var(X).
Let XXX have pmf P(X=x)=k 3xP(X=x)=k\,3^xP(X=x)=k3x for x=0,1,2x=0,1,2x=0,1,2. Determine kkk and find the standard deviation of XXX.
Suppose XXX takes values 0, 1 and 3 with probabilities ppp, 2p2p2p, 1−3p1-3p1−3p respectively. Given that E[X]=1E[X]=1E[X]=1, find ppp and the standard deviation of XXX.
A loaded die is rolled once. The probability of face iii is P(i)=i/21P(i)=i/21P(i)=i/21 for i=1,2,3,4,5,6i=1,2,3,4,5,6i=1,2,3,4,5,6. Find the standard deviation of the outcome XXX.
Let XXX take values 1,2,3,4,51,2,3,4,51,2,3,4,5 with P(X=x)=k(6−x)P(X=x)=k(6-x)P(X=x)=k(6−x). Determine kkk and compute the standard deviation of XXX.
Previous
Question Type 1: Finding the standard deviation of grouped data with frequency table
Next
Question Type 3: Finding the probability for a given PDF