Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the particular solution of the separable differential equation dydx=3y\frac{dy}{dx}=3ydxdy=3y satisfying y(0)=2y(0)=2y(0)=2.
Solve the differential equation dydx=−4y\frac{dy}{dx}=-4ydxdy=−4y with the initial condition y(1)=5y(1)=5y(1)=5 to find the particular solution.
Solve the initial‐value problem dydx=x+1y,y(0)=3\frac{dy}{dx}=\frac{x+1}{y},\quad y(0)=3dxdy=yx+1,y(0)=3 to find the particular solution.
Find the particular solution to the separable equation dydx=2xy2\frac{dy}{dx}=2xy^2dxdy=2xy2 given y(0)=1y(0)=1y(0)=1.
Determine the particular solution of dydx=sinx y2\frac{dy}{dx}=\sin x\,y^2dxdy=sinxy2 with the condition y(π2)=2y\bigl(\tfrac{\pi}{2}\bigr)=2y(2π)=2.
Find the particular solution of dydx=3x22y\frac{dy}{dx}=\frac{3x^2}{2y}dxdy=2y3x2 satisfying y(1)=2y(1)=2y(1)=2.
Find the particular solution of the differential equation dydx=2x1+3y2\frac{dy}{dx}=\frac{2x}{1+3y^2}dxdy=1+3y22x subject to y(0)=0y(0)=0y(0)=0.
Solve dydx=yx\frac{dy}{dx}=\frac{y}{x}dxdy=xy with y(1)=3y(1)=3y(1)=3 and find the particular solution.
Determine the particular solution of dydx=y2ex\frac{dy}{dx}=y^2e^xdxdy=y2ex given y(0)=1y(0)=1y(0)=1.
Solve the initial‐value problem dydx=y2x2,y(1)=2\frac{dy}{dx}=\frac{y^2}{x^2},\quad y(1)=2dxdy=x2y2,y(1)=2 to find the particular solution.
Find the particular solution of dydx=xy3\frac{dy}{dx}=xy^3dxdy=xy3 satisfying y(1)=1y(1)=1y(1)=1.
Previous
Question Type 3: Solving a separable differential equation to obtain the general solution
Next
No next topic