Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Solve the differential equation dydx=xy\frac{dy}{dx}=xydxdy=xy to find the general solution.
Find the general solution to dydx=y+2x .\frac{dy}{dx}=\frac{y+2}{x}\,. dxdy=xy+2.
Find the general solution of dydx=x+1y−1 .\frac{dy}{dx}=\frac{x+1}{y-1}\,. dxdy=y−1x+1.
Find the general solution of the differential equation dydx=2xy2 \displaystyle\frac{dy}{dx}=\frac{2x}{y^2}\,dxdy=y22x.
Solve the differential equation dydx=x21+y2 \frac{dy}{dx}=\frac{x^2}{1+y^2}\,dxdy=1+y2x2 giving an implicit general solution.
Solve for the general solution of dydx=cosx1+y2 .\frac{dy}{dx}=\frac{\cos x}{1+y^2}\,. dxdy=1+y2cosx.
Determine the general solution of dydx=(x−1)2(y+3) .\frac{dy}{dx}=(x-1)^2(y+3)\,. dxdy=(x−1)2(y+3).
Solve for yyy in the general solution of dydx=exy2 .\frac{dy}{dx}=e^x y^2\,. dxdy=exy2.
Determine the general solution of dydx=3x2+12y .\frac{dy}{dx}=\frac{3x^2+1}{2y}\,. dxdy=2y3x2+1.
Find the general solution of dydx=xex2y3 .\frac{dy}{dx} = x e^{x^2} y^3\,. dxdy=xex2y3.
Solve the logistic-type separable equation dydx=y(1−y)\frac{dy}{dx}=y(1-y)dxdy=y(1−y) to obtain the general solution.
Find the general solution of dydx=y1/3sinx .\frac{dy}{dx}=y^{1/3}\sin x\,. dxdy=y1/3sinx.
Previous
Question Type 2: Separating a differential equation into two variables
Next
Question Type 4: Finding the particular solution for a separable differential equation using the general solution