Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the magnitude and unit vector of v⃗=(3,4)\vec v = (3,4)v=(3,4)
Find the magnitude and unit vector of v⃗=(−5,12)\vec v = (-5,12)v=(−5,12)
Find the magnitude and unit vector of v⃗=(7,−24)\vec v = (7,-24)v=(7,−24)
Find the magnitude and unit vector of v⃗=(1,2,2)\vec v = (1,2,2)v=(1,2,2)
Find the magnitude and unit vector of v⃗=(2,−2,1)\vec v = (2,-2,1)v=(2,−2,1)
Find the magnitude and unit vector of v⃗=(3,0,4,0)\vec v = (3,0,4,0)v=(3,0,4,0)
Find the magnitude and unit vector of v⃗=(0,5,−5)\vec v = (0,5,-5)v=(0,5,−5)
Find the magnitude and unit vector of v⃗=(3,−3,1)\vec v = (3,-3,1)v=(3,−3,1)
Find the magnitude and unit vector of v⃗=(1,−1,1,−1)\vec v = (1,-1,1,-1)v=(1,−1,1,−1)
Find the magnitude and unit vector of v⃗=(2,5,6,1)\vec v = (2,5,6,1)v=(2,5,6,1)
Find the magnitude and unit vector of v⃗=(1.2,−2.4,3.6)\vec v = (1.2,-2.4,3.6)v=(1.2,−2.4,3.6)
Find the magnitude and unit vector of v⃗=(k,4k)\vec v = (k,4k)v=(k,4k), assuming k≠0k\neq0kî€ =0
Previous
Question Type 3: Performing simple calculations with vectors
Next
Question Type 5: Visually representing vector operations