Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), find the vector a+b−c\mathbf{a}+\mathbf{b}-\mathbf{c}a+b−c.
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), compute the vector b−a+c\mathbf{b}-\mathbf{a}+\mathbf{c}b−a+c.
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), find the midpoint of the segment joining the points represented by b\mathbf{b}b and 2c2\mathbf{c}2c.
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), compute (a+b)−(b+c)(\mathbf{a}+\mathbf{b})-(\mathbf{b}+\mathbf{c})(a+b)−(b+c).
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), find the vector that goes from the point represented by b\mathbf{b}b to the point represented by a+c\mathbf{a}+\mathbf{c}a+c.
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), find 2a−b+3c2\mathbf{a}-\mathbf{b}+3\mathbf{c}2a−b+3c.
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), find a unit vector in the direction of a+b−c\mathbf{a}+\mathbf{b}-\mathbf{c}a+b−c.
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), find the magnitude of the vector a+b+12c\mathbf{a}+\mathbf{b}+\tfrac12\mathbf{c}a+b+21c.
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), find the magnitude of the vector −2(a+b+c)-2(\mathbf{a}+\mathbf{b}+\mathbf{c})−2(a+b+c).
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), calculate the distance between the points represented by u=a+b+12c\mathbf{u}=\mathbf{a}+\mathbf{b}+\tfrac12\mathbf{c}u=a+b+21c and v=−2(a+b+c)\mathbf{v}=-2(\mathbf{a}+\mathbf{b}+\mathbf{c})v=−2(a+b+c).
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), compute the projection of b\mathbf{b}b onto c\mathbf{c}c.
Given a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1) and c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1), calculate the scalar triple product a⋅(b×c)\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})a⋅(b×c) and interpret its absolute value geometrically.
Previous
Question Type 4: Determining the unit vector of a given vector
Next
Question Type 6: Finding the distance between two position vectors