Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the magnitude of v=(4,6,1)v=(4,6,1)v=(4,6,1).
Calculate −v+4(3,4,3)-v+4(3,4,3)−v+4(3,4,3) for v=(4,6,1)v=(4,6,1)v=(4,6,1).
Compute 2v−(3,−1,2)2v-(3,-1,2)2v−(3,−1,2) for v=(4,6,1)v=(4,6,1)v=(4,6,1).
Given points A=(1,2,3)A=(1,2,3)A=(1,2,3) and B=(4,6,1)B=(4,6,1)B=(4,6,1), find the vector AB→\overrightarrow{AB}AB.
Given u=(1,2,3)u=(1,2,3)u=(1,2,3) and w=(4,0,−2)w=(4,0,-2)w=(4,0,−2), find 3u−2w3u-2w3u−2w.
Find the unit vector in the direction of v=(4,6,1)v=(4,6,1)v=(4,6,1).
Given v=(2,−1,2)v=(2,-1,2)v=(2,−1,2), find a unit vector parallel to vvv.
Given A=(1,2,3)A=(1,2,3)A=(1,2,3) and B=(4,6,1)B=(4,6,1)B=(4,6,1), find the magnitude of AB→\overrightarrow{AB}AB.
Given u=(1,2,3)u=(1,2,3)u=(1,2,3) and w=(4,0,−2)w=(4,0,-2)w=(4,0,−2), find the magnitude of 3u−2w3u-2w3u−2w.
Find the magnitude and unit vector of w=(3,−4,12)w=(3,-4,12)w=(3,−4,12).
Given u=(1,2,3)u=(1,2,3)u=(1,2,3) and v=(4,6,1)v=(4,6,1)v=(4,6,1), compute the magnitude and unit vector of 2u+3v2u+3v2u+3v.
Given u=(1,2,3)u=(1,2,3)u=(1,2,3) and w=(4,0,−2)w=(4,0,-2)w=(4,0,−2), find the angle θ\thetaθ between them.
Previous
Question Type 2: Sketching a path between two points using two given vectors on a grid
Next
Question Type 4: Determining the unit vector of a given vector