Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Simplify anx an xanx in terms of sinx\\sin xsinx and cosx\\cos xcosx.
Express secx\sec xsecx in terms of sinx\sin xsinx and cosx\cos xcosx.
Simplify 1−sin2xcosx\displaystyle \frac{1 - \sin^2 x}{\cos x}cosx1−sin2x into either sinx\sin xsinx or cosx\cos xcosx only.
Simplify sinxcosx+cosxsinx\displaystyle \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}cosxsinx+sinxcosx into a single fraction in terms of sinx\sin xsinx and cosx\cos xcosx.
Simplify sin3x+sinxcos2xsinx\displaystyle \frac{\sin^3 x + \sin x\cos^2 x}{\sin x}sinxsin3x+sinxcos2x into a simpler expression in sinx\sin xsinx and cosx\cos xcosx only.
Simplify tanx+cotx\tan x + \cot xtanx+cotx into a single fraction in terms of sinx\sin xsinx and cosx\cos xcosx.
Simplify tanx1+tan2x\displaystyle \frac{\tan x}{1 + \tan^2 x}1+tan2xtanx into an expression in sinx\sin xsinx and cosx\cos xcosx only.
Simplify (tan2x+1)sinxcosx(\tan^2 x + 1)\sin x\cos x(tan2x+1)sinxcosx in terms of sinx\sin xsinx or cosx\cos xcosx only.
Simplify secx−cosx\sec x - \cos xsecx−cosx into an expression involving only sinx\sin xsinx and cosx\cos xcosx (no sec\secsec).
Simplify sinx−cosxsinx+cosx\displaystyle \frac{\sin x - \cos x}{\sin x + \cos x}sinx+cosxsinx−cosx by rationalizing the denominator and express in terms of sinx\sin xsinx and cosx\cos xcosx only.
Express tanxsecx\tan x\sec xtanxsecx in terms of sinx\sin xsinx only.
Simplify 11+sinx+11−sinx\displaystyle \frac{1}{1+\sin x} + \frac{1}{1-\sin x}1+sinx1+1−sinx1 into an expression in sinx\sin xsinx and cosx\cos xcosx only.
Previous
Question Type 2: Given an equation of a line, finding the angle of elevation
Next
Question Type 4: Determining if given information on a triangle suffers from Ambigious case of sine rule