Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the acute angle of inclination (in degrees) between the line y=−3x+4y = -3x + 4y=−3x+4 and the positive xxx-axis.
Find the angle of elevation φ\varphiφ (in degrees) of the line y=25x+9y = 25x + 9y=25x+9 above the positive xxx-axis.
Simplify the expression tanθsecθ\frac{\tan\theta}{\sec\theta}secθtanθ in terms of sinθ\sin\thetasinθ and cosθ\cos\thetacosθ.
Prove the identity tan2θ+1=sec2θ\tan^2\theta + 1 = \sec^2\thetatan2θ+1=sec2θ.
Find the angle of inclination φ\varphiφ (in degrees) of the line given by 3x−4y+12=03x - 4y + 12 = 03x−4y+12=0 with respect to the positive xxx-axis.
Express 1sinx tanx\displaystyle \frac{1}{\sin x\,\tan x}sinxtanx1 in terms of cosx\cos xcosx only.
Simplify the expression tanθ (1+cosθ)sinθ\frac{\tan\theta\,(1 + \cos\theta)}{\sin\theta}sinθtanθ(1+cosθ).
Calculate the acute angle (in degrees) between the lines y=2x+1y = 2x + 1y=2x+1 and y=−13x−3y = -\frac{1}{3}x - 3y=−31x−3.
Simplify the expression 1−cos2xcosx sinx\displaystyle \frac{1 - \cos^2 x}{\cos x\,\sin x}cosxsinx1−cos2x.
Solve the equation 3sinx−4cosx=03\sin x - 4\cos x = 03sinx−4cosx=0 for xxx in the interval [0,2π)[0,2\pi)[0,2π).
Rearrange and simplify the equation secx−tanx=cosx\sec x - \tan x = \cos xsecx−tanx=cosx to an identity involving only sinx\sin xsinx and cosx\cos xcosx.
Solve the equation tan2x−3tanx+2=0\tan^2 x - 3\tan x + 2 = 0tan2x−3tanx+2=0 for xxx in [0,π)[0,\pi)[0,π).
Simplify the following to an expression involving only tanθ\tan\thetatanθ: tan2θ−sin2θsin2θ .\frac{\tan^2\theta - \sin^2\theta}{\sin^2\theta}\,. sin2θtan2θ−sin2θ.
Prove the identity tanx−sinx=sin2xcosx (1+cosx).\tan x - \sin x = \frac{\sin^2 x}{\cos x\,(1 + \cos x)}.tanx−sinx=cosx(1+cosx)sin2x.
Previous
Question Type 1: Determining relationship between trigonometric functions using unit circle
Next
Question Type 3: Rearranging equations and simplifying equations into either sin or cos only