Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Two particles move along P(t)=(0,0,0)+t(1,2,2)P(t)=(0,0,0)+t(1,2,2)P(t)=(0,0,0)+t(1,2,2) and Q(t)=(1,1,1)+t(2,1,3)Q(t)=(1,1,1)+t(2,1,3)Q(t)=(1,1,1)+t(2,1,3). Determine the time of closest approach.
Two points move with P(t)=(2t,2t,0)P(t)=(2t,2t,0)P(t)=(2t,2t,0) and Q(t)=(1−t,2+t,0)Q(t)=(1-t,2+t,0)Q(t)=(1−t,2+t,0). Find the time when the distance between them is smallest.
Find the time when the distance between P(t)=(1,2,3)+t(4,0,1)P(t)=(1,2,3)+t(4,0,1)P(t)=(1,2,3)+t(4,0,1) and Q(t)=(2,0,5)+t(1,3,2)Q(t)=(2,0,5)+t(1,3,2)Q(t)=(2,0,5)+t(1,3,2) is minimized.
Two particles move along trajectories P(t)=(2,1,4)+t(5,9,1)P(t)=(2,1,4)+t(5,9,1)P(t)=(2,1,4)+t(5,9,1) and Q(t)=(1,0,1)+t(8,7,2)Q(t)=(1,0,1)+t(8,7,2)Q(t)=(1,0,1)+t(8,7,2). Find the time ttt at which the distance between them is minimized.
Two objects follow P(t)=(3,1,0)+t(−1,2,1)P(t)=(3,1,0)+t(-1,2,1)P(t)=(3,1,0)+t(−1,2,1) and Q(t)=(−2,4,1)+t(2,−1,0)Q(t)=(-2,4,1)+t(2,-1,0)Q(t)=(−2,4,1)+t(2,−1,0). At what time are they closest?
Find the time of minimum separation for P(t)=(0,1,2)+t(3,0,4)P(t)=(0,1,2)+t(3,0,4)P(t)=(0,1,2)+t(3,0,4) and Q(t)=(1,0,0)+t(0,4,3)Q(t)=(1,0,0)+t(0,4,3)Q(t)=(1,0,0)+t(0,4,3).
For the trajectories P(t)=(1,0,0)+t(3,4,0)P(t)=(1,0,0)+t(3,4,0)P(t)=(1,0,0)+t(3,4,0) and Q(t)=(0,3,0)+t(4,−3,0)Q(t)=(0,3,0)+t(4,-3,0)Q(t)=(0,3,0)+t(4,−3,0), find the time of minimum separation and the minimum distance.
Determine the time and the corresponding distance when P(t)=(0,0,1)+t(1,1,1)P(t)=(0,0,1)+t(1,1,1)P(t)=(0,0,1)+t(1,1,1) and Q(t)=(1,2,3)+t(−1,2,0)Q(t)=(1,2,3)+t(-1,2,0)Q(t)=(1,2,3)+t(−1,2,0) are closest.
At what time do the moving points P(t)=(2,2,2)+t(1,−1,2)P(t)=(2,2,2)+t(1,-1,2)P(t)=(2,2,2)+t(1,−1,2) and Q(t)=(3,0,1)+t(−2,3,1)Q(t)=(3,0,1)+t(-2,3,1)Q(t)=(3,0,1)+t(−2,3,1) attain their minimum separation?
Find the time at which P(t)=(1,1,0)+t(2,3,4)P(t)=(1,1,0)+t(2,3,4)P(t)=(1,1,0)+t(2,3,4) and Q(t)=(0,2,3)+t(5,1,−1)Q(t)=(0,2,3)+t(5,1,-1)Q(t)=(0,2,3)+t(5,1,−1) are closest.
For P(t)=(2,1,4)+t(5,9,1)P(t)=(2,1,4)+t(5,9,1)P(t)=(2,1,4)+t(5,9,1) and Q(t)=(1,0,1)+t(8,7,2)Q(t)=(1,0,1)+t(8,7,2)Q(t)=(1,0,1)+t(8,7,2), find the time of closest approach and verify that D(t)=P(t)−Q(t)D(t)=P(t)-Q(t)D(t)=P(t)−Q(t) at this time is perpendicular to the relative velocity.
Derive the formula for the time ttt minimizing the distance between P(t)=P0+tvP(t)=P_0+tvP(t)=P0+tv and Q(t)=Q0+twQ(t)=Q_0+twQ(t)=Q0+tw, then apply it to P0=(2,1,4),v=(5,9,1)P_0=(2,1,4),v=(5,9,1)P0=(2,1,4),v=(5,9,1) and Q0=(1,0,1),w=(8,7,2)Q_0=(1,0,1),w=(8,7,2)Q0=(1,0,1),w=(8,7,2).
Previous
Question Type 3: Determining whether two objects intersect for their given trajectory
Next
Question Type 5: Finding the value of parameters such that two trajectories or objects would intersect