Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Determine whether the lines with equations r1=(2,1,4)+t(5,9,1)r_1=(2,1,4)+t(5,9,1)r1=(2,1,4)+t(5,9,1) and r2=(1,0,1)+s(8,7,2)r_2=(1,0,1)+s(8,7,2)r2=(1,0,1)+s(8,7,2) intersect.
Determine whether the lines r1=(1,2,3)+t(2,5,7)r_1=(1,2,3)+t(2,5,7)r1=(1,2,3)+t(2,5,7) and r2=(3,4,5)+s(4,3,1)r_2=(3,4,5)+s(4,3,1)r2=(3,4,5)+s(4,3,1) intersect.
Determine whether the lines r1=(0,−1,2)+t(3,4,1)r_1=(0,-1,2)+t(3,4,1)r1=(0,−1,2)+t(3,4,1) and r2=(2,1,3)+s(6,5,2)r_2=(2,1,3)+s(6,5,2)r2=(2,1,3)+s(6,5,2) intersect.
Using P1P_1P1 and P2P_2P2 from question 4, compute the minimum distance between them.
Find the time ttt at which P1(t)=(1,1,1)+t(2,0,1)P_1(t)=(1,1,1)+t(2,0,1)P1(t)=(1,1,1)+t(2,0,1) and P2(t)=(0,2,3)+t(1,3,−1)P_2(t)=(0,2,3)+t(1,3,-1)P2(t)=(0,2,3)+t(1,3,−1) are closest.
For the moving points P1(t)=(2,1,4)+t(5,9,1)P_1(t)=(2,1,4)+t(5,9,1)P1(t)=(2,1,4)+t(5,9,1) and P2(t)=(1,0,1)+t(8,7,2)P_2(t)=(1,0,1)+t(8,7,2)P2(t)=(1,0,1)+t(8,7,2), find the time ttt at which they are closest.
Using the result of question 5, find the minimum distance between P1(t)=(0,0,0)+t(1,2,3)P_1(t)=(0,0,0)+t(1,2,3)P1(t)=(0,0,0)+t(1,2,3) and P2(t)=(3,1,0)+t(4,−1,2)P_2(t)=(3,1,0)+t(4,-1,2)P2(t)=(3,1,0)+t(4,−1,2).
For the points P1(t)=(0,0,0)+t(1,2,3)P_1(t)=(0,0,0)+t(1,2,3)P1(t)=(0,0,0)+t(1,2,3) and P2(t)=(3,1,0)+t(4,−1,2)P_2(t)=(3,1,0)+t(4,-1,2)P2(t)=(3,1,0)+t(4,−1,2), determine the time ttt at which the distance between them is minimal.
Find the value of mmm such that the lines r1=(2,3,0)+t(1,1,m)r_1=(2,3,0)+t(1,1,m)r1=(2,3,0)+t(1,1,m) and r2=(0,4,1)+s(3,1,2)r_2=(0,4,1)+s(3,1,2)r2=(0,4,1)+s(3,1,2) intersect.
Find mmm for which the lines r1=(5,2,1)+t(m,3,4)r_1=(5,2,1)+t(m,3,4)r1=(5,2,1)+t(m,3,4) and r2=(2,5,3)+s(4,−1,2)r_2=(2,5,3)+s(4,-1,2)r2=(2,5,3)+s(4,−1,2) intersect.
Determine mmm so that r1=(1,0,2)+t(3,m,5)r_1=(1,0,2)+t(3,m,5)r1=(1,0,2)+t(3,m,5) and r2=(2,4,1)+s(6,1,3)r_2=(2,4,1)+s(6,1,3)r2=(2,4,1)+s(6,1,3) intersect.
Previous
Question Type 2: Determining with an object given a trajectory passes a specific point
Next
Question Type 4: Finding the time at which two objects are closest each other given some trajectory