Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the eigenvectors of the matrix A=(3002)A = \begin{pmatrix}3 & 0\\0 & 2\end{pmatrix}A=(3002) corresponding to its eigenvalues.
Find the eigenvectors of the matrix A=(5005)A = \begin{pmatrix}5 & 0\\0 & 5\end{pmatrix}A=(5005) corresponding to its eigenvalues.
Find the eigenvalues and corresponding eigenvectors of the matrix A=(4213)A = \begin{pmatrix}4 & 2\\1 & 3\end{pmatrix}A=(4123).
Find the eigenvalues and corresponding eigenvectors of the matrix A=(2112)A = \begin{pmatrix}2 & 1\\1 & 2\end{pmatrix}A=(2112).
Find the eigenvalues and corresponding eigenvectors of the matrix A=(1221)A = \begin{pmatrix}1 & 2\\2 & 1\end{pmatrix}A=(1221).
Find the eigenvalues and corresponding eigenvectors of the matrix A=(4−121)A = \begin{pmatrix}4 & -1\\2 & 1\end{pmatrix}A=(42−11).
Find the eigenvalues and corresponding eigenvectors of the matrix A=(5423)A = \begin{pmatrix}5 & 4\\2 & 3\end{pmatrix}A=(5243).
Find the eigenvectors of the matrix A=(2102)A = \begin{pmatrix}2 & 1\\0 & 2\end{pmatrix}A=(2012) corresponding to its eigenvalues.
Find the eigenvalues and corresponding eigenvectors of the matrix A=(01−23)A = \begin{pmatrix}0 & 1\\-2 & 3\end{pmatrix}A=(0−213).
Find the eigenvalues and corresponding eigenvectors of the matrix A=(6−213)A = \begin{pmatrix}6 & -2\\1 & 3\end{pmatrix}A=(61−23).
Find the eigenvalues and corresponding eigenvectors of the matrix A=(1324)A = \begin{pmatrix}1 & 3\\2 & 4\end{pmatrix}A=(1234).
Find the eigenvectors of the matrix A=(21−14)A = \begin{pmatrix}2 & 1\\-1 & 4\end{pmatrix}A=(2−114) corresponding to its eigenvalue(s).
Previous
Question Type 1: Finding the eigenvalues of a 2x2 matrix using the characteristic polynomial
Next
Question Type 3: Finding the diagonalization matrix of a 2x2 matrix using its eigenvalues and eigenvectors