Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the eigenvalues of the diagonal matrix A=(5003)A=\begin{pmatrix}5 & 0\\0 & 3\end{pmatrix}A=(5003).
Determine the eigenvalues of A=(2112)A=\begin{pmatrix}2 & 1\\1 & 2\end{pmatrix}A=(2112) by forming the characteristic equation.
Find the eigenvalues of the rank-one matrix A=(1111)A=\begin{pmatrix}1 & 1\\1 & 1\end{pmatrix}A=(1111).
Determine the eigenvalues of A=(−122−1)A=\begin{pmatrix}-1 & 2\\2 & -1\end{pmatrix}A=(−122−1) by finding its characteristic polynomial.
Find the eigenvalues of the matrix A=(4321)A = \begin{pmatrix}4 & 3\\2 & 1\end{pmatrix}A=(4231) using its characteristic polynomial.
Find the eigenvalues of A=(4726)A=\begin{pmatrix}4 & 7\\2 & 6\end{pmatrix}A=(4276) using its characteristic polynomial.
Compute the eigenvalues of A=(01−23)A=\begin{pmatrix}0 & 1\\-2 & 3\end{pmatrix}A=(0−213) by solving its characteristic polynomial.
Find the eigenvalues of A=(7465)A=\begin{pmatrix}7 & 4\\6 & 5\end{pmatrix}A=(7645) using its characteristic equation.
Find the eigenvalues of A=(3−42−1)A=\begin{pmatrix}3 & -4\\2 & -1\end{pmatrix}A=(32−4−1) by solving its characteristic polynomial.
Determine the eigenvalues of the rotation matrix A=(0−110)A=\begin{pmatrix}0 & -1\\1 & 0\end{pmatrix}A=(01−10).
For the matrix A=(ab0a)A=\begin{pmatrix}a & b\\0 & a\end{pmatrix}A=(a0ba) with constants a,ba,ba,b, find its eigenvalues.
Let A=(cosθ−sinθsinθcosθ)A=\begin{pmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{pmatrix}A=(cosθsinθ−sinθcosθ). Find its eigenvalues in terms of θ\thetaθ.
Previous
No previous topic
Next
Question Type 2: Finding the eigenvectors corresponding to eigenvalues of a 2x2 matrix