Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Diagonalize the matrix A=(2003)A = \begin{pmatrix}2 & 0\\0 & 3\end{pmatrix}A=(2003) by finding matrices P and D such that A=PDP−1A = P D P^{-1}A=PDP−1.
Find matrices P and D such that A=PDP−1A = P D P^{-1}A=PDP−1 for A=(4102)A = \begin{pmatrix}4 & 1\\0 & 2\end{pmatrix}A=(4012).
Diagonalize the matrix A=(6106)A=\begin{pmatrix}6 & 1\\0 & 6\end{pmatrix}A=(6016) or explain why it cannot be diagonalized.
Find the diagonalization of A=(3113)A = \begin{pmatrix}3 & 1\\1 & 3\end{pmatrix}A=(3113) by determining P and D.
Diagonalize the symmetric matrix A=(2112)A=\begin{pmatrix}2 & 1\\1 & 2\end{pmatrix}A=(2112) by finding P and D.
Diagonalize A=(1221)A = \begin{pmatrix}1 & 2\\2 & 1\end{pmatrix}A=(1221) by finding P and D such that A=PDP−1A=PDP^{-1}A=PDP−1.
Diagonalize A=(5412)A=\begin{pmatrix}5 & 4\\1 & 2\end{pmatrix}A=(5142) by computing P and D.
Determine whether A=(1011)A=\begin{pmatrix}1 & 0\\1 & 1\end{pmatrix}A=(1101) is diagonalizable. If yes, find P and D; if not, explain why.
Find the diagonalization of A=(2332)A=\begin{pmatrix}2 & 3\\3 & 2\end{pmatrix}A=(2332) by determining P and D.
Find P and D such that A=PDP−1A=PDP^{-1}A=PDP−1 for A=(01−23)A=\begin{pmatrix}0 & 1\\-2 & 3\end{pmatrix}A=(0−213).
Find P and D such that A=PDP−1A=PDP^{-1}A=PDP−1 for A=(4213)A=\begin{pmatrix}4 & 2\\1 & 3\end{pmatrix}A=(4123).
Diagonalize the matrix A=(7223)A=\begin{pmatrix}7 & 2\\2 & 3\end{pmatrix}A=(7223) by finding P and D.
Previous
Question Type 2: Finding the eigenvectors corresponding to eigenvalues of a 2x2 matrix
Next
Question Type 4: Rewriting 2x2 matrices using their diagonal matrix to calculate powers of a 2x2 matrix