Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Show that for all real xxx, sinx+sin(−x)=0\sin x + \sin(-x) = 0sinx+sin(−x)=0, and state the values of xxx in −2π<x<2π-2\pi < x < 2\pi−2π<x<2π satisfying the equation.
Determine the coordinates of the points on the unit circle corresponding to the angles x=5π6x = \tfrac{5\pi}{6}x=65π and x=−7π6x = -\tfrac{7\pi}{6}x=−67π.
Find all values of xxx in the interval −2π<x<2π-2\pi < x < 2\pi−2π<x<2π such that tanx=tan(π4)\tan x = \tan\left(\frac{\pi}{4}\right)tanx=tan(4π).
Determine all values of xxx in −2π<x<2π-2\pi < x < 2\pi−2π<x<2π for which cotx=1\cot x = 1cotx=1.
Find all values of xxx in the interval −2π<x<2π-2\pi < x < 2\pi−2π<x<2π such that cosx=cos(π6)\cos x = \cos\left(\frac{\pi}{6}\right)cosx=cos(6π).
Solve sinx=−32\sin x = -\tfrac{\sqrt{3}}{2}sinx=−23 for xxx in the interval −2π<x<2π-2\pi < x < 2\pi−2π<x<2π.
Find all values of xxx in the interval −2π<x<2π-2\pi < x < 2\pi−2π<x<2π such that sinx=sin(π3)\sin x = \sin\left(\frac{\pi}{3}\right)sinx=sin(3π).
Find all values of xxx in −2π<x<2π-2\pi < x < 2\pi−2π<x<2π satisfying cosx=cos(3π4)\cos x = \cos\left(\tfrac{3\pi}{4}\right)cosx=cos(43π).
Determine all xxx in −2π<x<2π-2\pi < x < 2\pi−2π<x<2π satisfying 2sin2x−1=02\sin^2 x - 1 = 02sin2x−1=0.
Solve for xxx in −2π<x<2π-2\pi < x < 2\pi−2π<x<2π the equation cos(2x)=12\cos(2x) = \tfrac12cos(2x)=21.
Solve secx=2\sec x = 2secx=2 for xxx in the interval −2π<x<2π-2\pi < x < 2\pi−2π<x<2π.
Solve sin(2x)=22\sin(2x) = \tfrac{\sqrt{2}}{2}sin(2x)=22 for xxx in −2π<x<2π-2\pi < x < 2\pi−2π<x<2π.
Previous
No previous topic
Next
Question Type 2: Given an equation of a line, finding the angle of elevation