Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
For vectors a=(3,−1,2)a=(3,-1,2)a=(3,−1,2) and b=(1,4,0)b=(1,4,0)b=(1,4,0), find the scalar component of aaa in the direction of bbb.
Find the scalar component of vector a=(5,4,1)a=(5,4,1)a=(5,4,1) in the direction of b=(2,1,6)b=(2,1,6)b=(2,1,6).
For a=(3,−1,2)a=(3,-1,2)a=(3,−1,2) and b=(1,4,0)b=(1,4,0)b=(1,4,0), determine the vector component of aaa parallel to bbb.
Compute the scalar component of b=(5,0,2)b=(5,0,2)b=(5,0,2) in the direction of a=(2,−3,1)a=(2,-3,1)a=(2,−3,1).
Find the vector projection of a=(5,4,1)a=(5,4,1)a=(5,4,1) onto b=(2,1,6)b=(2,1,6)b=(2,1,6).
Given a=(3,2,−2)a=(3,2,-2)a=(3,2,−2) and b=(1,0,1)b=(1,0,1)b=(1,0,1), find the vector component of aaa perpendicular to bbb.
Find the scalar component of a=(4,5,6)a=(4,5,6)a=(4,5,6) in the direction of b=(−1,2,3)b=(-1,2,3)b=(−1,2,3).
Find the vector projection of b=(5,0,2)b=(5,0,2)b=(5,0,2) onto a=(2,−3,1)a=(2,-3,1)a=(2,−3,1).
Let a=(7,1,4)a=(7,1,4)a=(7,1,4) and b=(2,3,6)b=(2,3,6)b=(2,3,6). Find the vector component of aaa perpendicular to bbb.
Given a=(1,1,1)a=(1,1,1)a=(1,1,1) and b=(1,2,2)b=(1,2,2)b=(1,2,2), determine the component of aaa perpendicular to bbb.
Determine the vector projection of a=(4,5,6)a=(4,5,6)a=(4,5,6) onto b=(−1,2,3)b=(-1,2,3)b=(−1,2,3).
For a=(3,2,−2)a=(3,2,-2)a=(3,2,−2) and b=(1,0,1)b=(1,0,1)b=(1,0,1), verify that the component of aaa perpendicular to bbb lies in the plane orthogonal to bbb by computing it.
Previous
Question Type 6: Finding the area of a parallelogram or triangle spanned by two vectors
Next
Question Type 8: Determining components of a vector not acting or acting perpendicularly on another vector