Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the area of the triangle with vertices at the origin, the point with position vector u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2) and the point with position vector v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1).
Calculate the area of the parallelogram defined by u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2) and v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1).
Find the area of the triangle with vertices at the origin, 2u2\mathbf{u}2u and 3v3\mathbf{v}3v, where u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2) and v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1).
Compute the area of the parallelogram defined by the vectors 3u3\mathbf{u}3u and 2v2\mathbf{v}2v, where u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2) and v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1).
Determine the angle θ\thetaθ between u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2) and v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1).
Find the area of the parallelogram spanned by u+v\mathbf{u}+\mathbf{v}u+v and u−v\mathbf{u}-\mathbf{v}u−v, where u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2) and v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1).
The points A,B,CA,B,CA,B,C have position vectors u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2), v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1) and u+v\mathbf{u}+\mathbf{v}u+v. Find the area of triangle ABCABCABC.
Find the height of the parallelogram spanned by u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2) and v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1), measured perpendicular to the base vector u\mathbf{u}u.
Using the scalar product, verify the area of the parallelogram spanned by u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2) and v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1) without computing the cross product.
Find a unit normal vector to the plane of the parallelogram spanned by u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2) and v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1).
Determine the area of the quadrilateral with vertices OOO, u\mathbf{u}u, u+2v\mathbf{u}+2\mathbf{v}u+2v and 2v2\mathbf{v}2v in that order, where u=(2,1,2)\mathbf{u}=(2,1,2)u=(2,1,2) and v=(1,2,1)\mathbf{v}=(1,2,1)v=(1,2,1).
Previous
Question Type 5: Finding the cross product for two given vectors
Next
Question Type 7: Determining components of vectors that complement another vector