Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Given u=(2,−1,3)\mathbf{u} = (2,-1,3)u=(2,−1,3) and v=(0,4,−2)\mathbf{v}=(0,4,-2)v=(0,4,−2), compute u×v\mathbf{u}\times\mathbf{v}u×v and verify that it is orthogonal to both u\mathbf{u}u and v\mathbf{v}v.
If two vectors u\mathbf{u}u and v\mathbf{v}v have magnitudes ∣u∣=5|\mathbf{u}|=5∣u∣=5, ∣v∣=7|\mathbf{v}|=7∣v∣=7 and the angle between them is 60∘60^\circ60∘, compute ∣u×v∣|\mathbf{u}\times\mathbf{v}|∣u×v∣.
Prove that for any nonzero vectors u,v\mathbf{u},\mathbf{v}u,v in R3\mathbb{R}^3R3, (u×v)⋅(u+v)=0.(\mathbf{u}\times\mathbf{v})\cdot(\mathbf{u}+\mathbf{v})=0.(u×v)⋅(u+v)=0.
Let u=(a,b,c)\mathbf{u}=(a,b,c)u=(a,b,c) and v=(2a,2b,2c)\mathbf{v}=(2a,2b,2c)v=(2a,2b,2c). Show that u×v=0\mathbf{u}\times\mathbf{v}=\mathbf{0}u×v=0 and conclude the relationship between u\mathbf{u}u and v\mathbf{v}v.
Given u=(3,1,0)\mathbf{u}=(3,1,0)u=(3,1,0) and v=(1,2,2)\mathbf{v}=(1,2,2)v=(1,2,2), find the area of the parallelogram spanned by u\mathbf{u}u and v\mathbf{v}v.
Given u=(1,0,1)\mathbf{u}=(1,0,1)u=(1,0,1), v=(2,1,3)\mathbf{v}=(2,1,3)v=(2,1,3) and w=(3,2,4)\mathbf{w}=(3,2,4)w=(3,2,4), show that these vectors are coplanar.
Using generic components u=(u1,u2,u3)\mathbf{u}=(u_1,u_2,u_3)u=(u1,u2,u3) and v=(v1,v2,v3)\mathbf{v}=(v_1,v_2,v_3)v=(v1,v2,v3), prove that u×v=−v×u\mathbf{u}\times\mathbf{v}=-\mathbf{v}\times\mathbf{u}u×v=−v×u.
Given u=(1,0,2)\mathbf{u}=(1,0,2)u=(1,0,2), v=(0,1,3)\mathbf{v}=(0,1,3)v=(0,1,3) and w=(2,1,1)\mathbf{w}=(2,1,1)w=(2,1,1), compute the scalar triple product u⋅(v×w)\mathbf{u}\cdot(\mathbf{v}\times\mathbf{w})u⋅(v×w) and hence find the volume of the parallelepiped determined by u,v,w\mathbf{u},\mathbf{v},\mathbf{w}u,v,w.
Find a unit vector perpendicular to both u=(1,2,2)\mathbf{u}=(1,2,2)u=(1,2,2) and v=(2,−1,3)\mathbf{v}=(2,-1,3)v=(2,−1,3).
Let u=(1,2,3)\mathbf{u}=(1,2,3)u=(1,2,3), v=(0,1,4)\mathbf{v}=(0,1,4)v=(0,1,4) and w=(2,0,1)\mathbf{w}=(2,0,1)w=(2,0,1). Decompose w\mathbf{w}w into a component perpendicular to the plane spanned by u\mathbf{u}u and v\mathbf{v}v and a component parallel to that plane.
Show that for any vectors u,v\mathbf{u},\mathbf{v}u,v in R3\mathbb{R}^3R3, the squared magnitude of their cross product satisfies ∣u×v∣2=∣u∣2 ∣v∣2−(u⋅v)2.|\mathbf{u}\times\mathbf{v}|^2 = |\mathbf{u}|^2\,|\mathbf{v}|^2 - (\mathbf{u}\cdot\mathbf{v})^2.∣u×v∣2=∣u∣2∣v∣2−(u⋅v)2.
Give an explicit example of three vectors u,v,w\mathbf{u},\mathbf{v},\mathbf{w}u,v,w such that (u×v)×w≠u×(v×w)(\mathbf{u}\times\mathbf{v})\times\mathbf{w}\neq\mathbf{u}\times(\mathbf{v}\times\mathbf{w})(u×v)×w=u×(v×w), and compute both sides.
Previous
Question Type 7: Determining components of vectors that complement another vector
Next
No next topic