Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Express the cross product u×vu\times vu×v using the determinant of a 3×33\times33×3 matrix for u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4).
Compute the cross product of u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4).
Compute v×uv\times uv×u and verify the relationship between v×uv\times uv×u and u×vu\times vu×v for u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4).
Find the area of the parallelogram spanned by u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4).
Compute (3u)×(2v)(3u)\times(2v)(3u)×(2v) where u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4).
Show that u×vu\times vu×v is perpendicular to both uuu and vvv for u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4) by computing dot products.
Find the area of the triangle formed by u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4) at the origin.
If a=u+2va=u+2va=u+2v, compute u×au\times au×a for u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4).
Verify the distributive property by computing u×(v+w)u\times(v+w)u×(v+w) for u=(2,3,1)u=(2,3,1)u=(2,3,1), v=(4,1,4)v=(4,1,4)v=(4,1,4) and w=(1,0,2)w=(1,0,2)w=(1,0,2).
Find the equation of the plane through the origin with normal vector u×vu\times vu×v, where u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4).
Determine a unit vector perpendicular to both u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4).
Given w=(1,2,3)w=(1,2,3)w=(1,2,3), compute the scalar triple product u⋅(v×w)u\cdot(v\times w)u⋅(v×w) for u=(2,3,1)u=(2,3,1)u=(2,3,1) and v=(4,1,4)v=(4,1,4)v=(4,1,4), and interpret its absolute value geometrically.
Previous
Question Type 4: Finding for what values of a parameter are two vectors perpendicular
Next
Question Type 6: Finding the area of a parallelogram or triangle spanned by two vectors