Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Express the vector sum a+b+c+d\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}a+b+c+d in i,j,k\mathbf{i},\mathbf{j},\mathbf{k}i,j,k notation, given a,b,c,d\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}a,b,c,d as in question 1.
In the xyxyxy-plane, vectors p=(5,2,0)\mathbf{p}=(5,2,0)p=(5,2,0), q=(1,−3,0)\mathbf{q}=(1,-3,0)q=(1,−3,0), r=(−4,1,0)\mathbf{r}=(-4,1,0)r=(−4,1,0) and s=(0,0,0)\mathbf{s}=(0,0,0)s=(0,0,0) are given. Use a single tip-to-tail chain to find the resultant and verify whether it equals the zero vector.
Given the vectors a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1), c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1) and d=(0,2,2)\mathbf{d}=(0,2,2)d=(0,2,2), calculate the resultant vector R=a+b+c+d\mathbf{R}=\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}R=a+b+c+d without drawing individual tip-to-tail diagrams.
Three vectors in the xyxyxy-plane are p=(4,0,0)\mathbf{p}=(4,0,0)p=(4,0,0), q=(0,3,0)\mathbf{q}=(0,3,0)q=(0,3,0) and r=(−2,1,0)\mathbf{r}=(-2,1,0)r=(−2,1,0). Without drawing separate tip-to-tail diagrams, find the resultant and its magnitude.
Given vectors u=2i−j+k\mathbf{u}=2\mathbf{i}-\mathbf{j}+\mathbf{k}u=2i−j+k, v=−i+3j+2k\mathbf{v}=-\mathbf{i}+3\mathbf{j}+2\mathbf{k}v=−i+3j+2k, w=i+j−k\mathbf{w}=\mathbf{i}+\mathbf{j}-\mathbf{k}w=i+j−k, find the missing vector x\mathbf{x}x such that u+v+w+x=0\mathbf{u}+\mathbf{v}+\mathbf{w}+\mathbf{x}=\mathbf{0}u+v+w+x=0.
For the vectors u=(2,−1,0)\mathbf{u}=(2,-1,0)u=(2,−1,0), v=(−1,2,3)\mathbf{v}=(-1,2,3)v=(−1,2,3) and w=(0,1,−2)\mathbf{w}=(0,1,-2)w=(0,1,−2), find S=u+v+w\mathbf{S}=\mathbf{u}+\mathbf{v}+\mathbf{w}S=u+v+w and compute its magnitude ∥S∥\|\mathbf{S}\|∥S∥.
Vectors u,v,w,x\mathbf{u},\mathbf{v},\mathbf{w},\mathbf{x}u,v,w,x satisfy u+v+w=d\mathbf{u}+\mathbf{v}+\mathbf{w}=\mathbf{d}u+v+w=d and x=d−(u+v+w)\mathbf{x}=\mathbf{d}-(\mathbf{u}+\mathbf{v}+\mathbf{w})x=d−(u+v+w). If u=(1,2,3)\mathbf{u}=(1,2,3)u=(1,2,3), v=(0,1,−1)\mathbf{v}=(0,1,-1)v=(0,1,−1) and d=(3,3,4)\mathbf{d}=(3,3,4)d=(3,3,4), find w\mathbf{w}w and x\mathbf{x}x.
Compute the scalar projection of R=a+b+c+d\mathbf{R}=\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}R=a+b+c+d onto b\mathbf{b}b, where a,b,c,d\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}a,b,c,d are as in question 1.
Given p=(3,0,4)\mathbf{p}=(3,0,4)p=(3,0,4), q=(0,5,−3)\mathbf{q}=(0,5,-3)q=(0,5,−3) and r=(−2,1,1)\mathbf{r}=(-2,1,1)r=(−2,1,1), find the unit vector in the direction of p+q+r\mathbf{p}+\mathbf{q}+\mathbf{r}p+q+r.
Given vectors a,b,c,d\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}a,b,c,d from question 1, find the magnitude of R\mathbf{R}R and compare with the sum of magnitudes ∥a∥+∥b∥+∥c∥+∥d∥\|\mathbf{a}\|+\|\mathbf{b}\|+\|\mathbf{c}\|+\|\mathbf{d}\|∥a∥+∥b∥+∥c∥+∥d∥.
Show that the four vectors a,b,c,d\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}a,b,c,d from question 1 form a closed quadrilateral when placed tip-to-tail in order.
Let a=(1,1,3)\mathbf{a}=(1,1,3)a=(1,1,3), b=(1,0,−1)\mathbf{b}=(1,0,-1)b=(1,0,−1), c=(1,1,1)\mathbf{c}=(1,1,1)c=(1,1,1) and d=(0,2,2)\mathbf{d}=(0,2,2)d=(0,2,2). Determine the angle θ\thetaθ between R=a+b+c+d\mathbf{R}=\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}R=a+b+c+d and a\mathbf{a}a.
Previous
Question Type 5: Visually representing vector operations
Next
No next topic