Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Compute the endpoint after taking 3 steps of v1=(1,−2)\mathbf{v_1}=(1,-2)v1=(1,−2) and 2 steps of v2=(6,−5)\mathbf{v_2}=(6,-5)v2=(6,−5) starting from the origin.
If you take 2 forward steps of v1=(1,−2)\mathbf{v_1}=(1,-2)v1=(1,−2) and then 3 backward steps of v2=(6,−5)\mathbf{v_2}=(6,-5)v2=(6,−5), what point do you reach?
If you first take one step of v2=(6,−5)\mathbf{v_2}=(6,-5)v2=(6,−5), then backtrack along v1=(1,−2)\mathbf{v_1}=(1,-2)v1=(1,−2) kkk times to reach the point (2,3)(2,3)(2,3), find kkk.
Solve for integers a,ba,ba,b such that av1+bv2=(2,3)a\mathbf{v_1}+b\mathbf{v_2}=(2,3)av1+bv2=(2,3) where v1=(1,−2)\mathbf{v_1}=(1,-2)v1=(1,−2) and v2=(6,−5)\mathbf{v_2}=(6,-5)v2=(6,−5).
Determine all integer solutions (a,b)(a,b)(a,b) such that av1+bv2=(6,−5)a\mathbf{v_1}+b\mathbf{v_2}=(6,-5)av1+bv2=(6,−5) with v1=(1,−2)\mathbf{v_1}=(1,-2)v1=(1,−2) and v2=(6,−5)\mathbf{v_2}=(6,-5)v2=(6,−5).
Can the point (1,1)(1,1)(1,1) be reached by integer combinations of v1=(1,−2)\mathbf{v_1}=(1,-2)v1=(1,−2) and v2=(6,−5)\mathbf{v_2}=(6,-5)v2=(6,−5)? Justify your answer.
List all points that can be reached in exactly 3 forward moves (only positive multiples) using v1=(1,−2)\mathbf{v_1}=(1,-2)v1=(1,−2) and v2=(6,−5)\mathbf{v_2}=(6,-5)v2=(6,−5) from the origin.
What is the minimum number of moves (allowing forward or backward steps) needed to reach (2,3)(2,3)(2,3) from the origin? Provide the sequence of moves.
Is the point (3,0)(3,0)(3,0) reachable using forward or backward moves of v1=(1,−2)\mathbf{v_1}=(1,-2)v1=(1,−2) and v2=(6,−5)\mathbf{v_2}=(6,-5)v2=(6,−5)? If yes, find one integer combination; if not, explain why.
Find a sequence of moves using exactly 4 forward steps of v1\mathbf{v_1}v1 or v2\mathbf{v_2}v2 to reach (2,3)(2,3)(2,3), or explain why it is impossible.
Determine whether it is possible to reach (2,3)(2,3)(2,3) using exactly 5 moves (forward or backward) along v1\mathbf{v_1}v1 or v2\mathbf{v_2}v2. If yes, give the counts of each move.
Explain why v1=(1,−2)\mathbf{v_1}=(1,-2)v1=(1,−2) and v2=(6,−5)\mathbf{v_2}=(6,-5)v2=(6,−5) form a basis for R2\mathbb{R}^2R2 by computing the determinant of the matrix with columns v1,v2\mathbf{v_1},\mathbf{v_2}v1,v2.
Previous
Question Type 1: Formulating path between two points using given vectors on an image
Next
Question Type 3: Performing simple calculations with vectors