In the study of calculus, understanding how functions behave is crucial. One key aspect of this is identifying when a function is increasing or decreasing.
Defining Increasing and Decreasing Functions
A function $f(x)$ is said to be increasing on an interval if, for any two points $x_1$ and $x_2$ in that interval where $x_1 < x_2$, we have $f(x_1) < f(x_2)$. Conversely, a function is decreasing on an interval if, for any two points $x_1$ and $x_2$ in that interval where $x_1 < x_2$, we have $f(x_1) > f(x_2)$.
Note
It's important to distinguish between strictly increasing/decreasing and non-strictly increasing/decreasing functions. The definitions above describe strictly increasing/decreasing functions. For non-strict versions, we would use $\leq$ and $\geq$ instead of $<$ and $>$.
The Role of Derivatives
Unlock the rest of this chapter with aFreeaccount
Nice try, unfortunately this paywall isn't as easy to bypass as you think. Want to help devleop the site? Join the team at https://revisiondojo.com/join-us. exercitation voluptate cillum ullamco excepteur sint officia do tempor Lorem irure minim Lorem elit id voluptate reprehenderit voluptate laboris in nostrud qui non Lorem nostrud laborum culpa sit occaecat reprehenderit
Definition
Paywall
(on a website) an arrangement whereby access is restricted to users who have paid to subscribe to the site.
anim nostrud sit dolore minim proident quis fugiat velit et eiusmod nulla quis nulla mollit dolor sunt culpa aliqua
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Note
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam quis nostrud exercitation.
Excepteur sint occaecat cupidatat non proident
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit.
Tip
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum.
End of article
Lesson
Recap your knowledge with an interactive lesson
6 minute activity
Note
Introduction to Increasing and Decreasing Functions
Understanding how functions behave is a fundamental aspect of calculus. One of the key behaviors we study is whether a function is increasing or decreasing on a given interval.
A function is increasing on an interval if, as you move from left to right, the function values go up.
A function is decreasing on an interval if the function values go down as you move from left to right.
AnalogyThink of an increasing function like walking uphill and a decreasing function like walking downhill.
DefinitionIncreasing Function
A function f(x) is increasing on an interval if for any two points x1<x2 in that interval, f(x1)<f(x2).
DefinitionDecreasing Function
A function f(x) is decreasing on an interval if for any two points x1<x2 in that interval, f(x1)>f(x2).