Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Let a=(2,2,2)\mathbf{a}=(2, 2, 2)a=(2,2,2), b=(1,−1,0)\mathbf{b}=(1, -1, 0)b=(1,−1,0) and c=(0,3,−3)\mathbf{c}=(0, 3, -3)c=(0,3,−3).
Find the distance between a−c\mathbf{a}-\mathbf{c}a−c and b+2c\mathbf{b}+2\mathbf{c}b+2c.
Let a=(0,2,4)\mathbf{a}=(0,2,4)a=(0,2,4), b=(5,1,−1)\mathbf{b}=(5,1,-1)b=(5,1,−1) and c=(2,−2,3)\mathbf{c}=(2,-2,3)c=(2,−2,3). Find the distance between 3a−12b+c3\mathbf{a}-\frac{1}{2}\mathbf{b}+\mathbf{c}3a−21b+c and a+b−2c\mathbf{a}+\mathbf{b}-2\mathbf{c}a+b−2c.
Let a=(3,3,3)\mathbf{a}=(3,3,3)a=(3,3,3), b=(−1,0,2)\mathbf{b}=(-1,0,2)b=(−1,0,2) and c=(0,1,−1)\mathbf{c}=(0,1,-1)c=(0,1,−1). Find the distance between a−b+2c\mathbf{a}-\mathbf{b}+2\mathbf{c}a−b+2c and −3a+b−c-3\mathbf{a}+\mathbf{b}-\mathbf{c}−3a+b−c
Given a=(3,−1,2)\mathbf{a}=(3,-1,2)a=(3,−1,2), b=(1,1,1)\mathbf{b}=(1,1,1)b=(1,1,1) and c=(−2,2,0)\mathbf{c}=(-2,2,0)c=(−2,2,0), find the distance between a+13b−c\mathbf{a}+\frac{1}{3}\mathbf{b}-\mathbf{c}a+31b−c and −2a+b+c-2\mathbf{a}+\mathbf{b}+\mathbf{c}−2a+b+c.
Given a=(14−2)\mathbf{a}=\begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}a=14−2, b=(−213)\mathbf{b}=\begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}b=−213 and c=(301)\mathbf{c}=\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}c=301, find the distance between the vectors a+b−c\mathbf{a}+\mathbf{b}-\mathbf{c}a+b−c and −a+2b+c-\mathbf{a}+2\mathbf{b}+\mathbf{c}−a+2b+c.
Let a=(4,1,0)\mathbf{a}=(4,1,0)a=(4,1,0), b=(0,−3,2)\mathbf{b}=(0,-3,2)b=(0,−3,2) and c=(5,1,−1)\mathbf{c}=(5,1,-1)c=(5,1,−1). Find the distance between 2a+b−c3\frac{2\mathbf{a}+\mathbf{b}-\mathbf{c}}{3}32a+b−c and a−2b+12c\mathbf{a}-2\mathbf{b}+\frac{1}{2}\mathbf{c}a−2b+21c.
Given a=(1,2,3)\mathbf{a}=(1,2,3)a=(1,2,3), b=(4,−1,2)\mathbf{b}=(4,-1,2)b=(4,−1,2) and c=(0,1,1)\mathbf{c}=(0,1,1)c=(0,1,1), find the distance between a+b+c2\tfrac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{2}2a+b+c and b−2c+a\mathbf{b}-2\mathbf{c}+\mathbf{a}b−2c+a.
Let a=(2,−1,4)\mathbf{a}=(2,-1,4)a=(2,−1,4), b=(0,3,1)\mathbf{b}=(0,3,1)b=(0,3,1) and c=(−1,2,2)\mathbf{c}=(-1,2,2)c=(−1,2,2). Find the distance between 2a−b+c2\mathbf{a}-\mathbf{b}+\mathbf{c}2a−b+c and a+3b−14c\mathbf{a}+3\mathbf{b}-\frac{1}{4}\mathbf{c}a+3b−41c.
Given a=(111)\mathbf{a}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}a=111, b=(234)\mathbf{b}=\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}b=234 and c=(567)\mathbf{c}=\begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix}c=567, find the distance between the vectors a+b+c\mathbf{a}+\mathbf{b}+\mathbf{c}a+b+c and 4a−b−2c4\mathbf{a}-\mathbf{b}-2\mathbf{c}4a−b−2c.
Given the standard basis a=(1,0,0)\mathbf{a}=(1,0,0)a=(1,0,0), b=(0,1,0)\mathbf{b}=(0,1,0)b=(0,1,0), c=(0,0,1)\mathbf{c}=(0,0,1)c=(0,0,1), find the distance between a+b+c\mathbf{a}+\mathbf{b}+\mathbf{c}a+b+c and −(a−b+2c)-(\mathbf{a}-\mathbf{b}+2\mathbf{c})−(a−b+2c).
Given a=(113)\mathbf{a}=\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}a=113, b=(10−1)\mathbf{b}=\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}b=10−1 and c=(111)\mathbf{c}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}c=111, find the distance between a+b+12c\mathbf{a}+\mathbf{b}+\frac{1}{2}\mathbf{c}a+b+21c and −2(a+b+c)-2(\mathbf{a}+\mathbf{b}+\mathbf{c})−2(a+b+c).
Type: Long Answer | Level: - | Paper: -
Let a=(−201)\mathbf{a}=\begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}a=−201, b=(32−1)\mathbf{b}=\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}b=32−1 and c=(1−12)\mathbf{c}=\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}c=1−12. Find the distance between the point defined by −a+32b−c-\mathbf{a}+\frac{3}{2}\mathbf{b}-\mathbf{c}−a+23b−c and the point defined by 2a−b+12c2\mathbf{a}-\mathbf{b}+\frac{1}{2}\mathbf{c}2a−b+21c.
Previous
Question Type 5: Finding distance between any two simple vectors
Next
No next topic