Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Solve sinx+sin2x=0\sin x + \sin 2x = 0sinx+sin2x=0 for 0≤x<2π0 \le x < 2\pi0≤x<2π.
Solve for xxx in the equation
cosx(12+sin2x)=sinxtanx,\cos x\left(\frac{1}{2} + \sin 2x\right) = \frac{\sin x}{\tan x},cosx(21+sin2x)=tanxsinx,
where xxx is in the interval [0,2π)[0, 2\pi)[0,2π).
Solve for xxx in 0≤x<2π0 \le x < 2\pi0≤x<2π: cos (x+π4)=sin2x\cos\!\big(x + \tfrac{\pi}{4}\big) = \sin 2xcos(x+4π)=sin2x.
Solve for xxx in 0≤x<2π0 \le x < 2\pi0≤x<2π: cosx(12+sin2x)=sinxtanx\cos x \left(\frac{1}{2} + \sin 2x\right) = \dfrac{\sin x}{\tan x}cosx(21+sin2x)=tanxsinx
sinx+sin2x=0,\sin x + \sin 2x = 0,sinx+sin2x=0,
where xxx is in [0,2π)[0, 2\pi)[0,2π).
Solve for xxx in 0≤x<2π0 \le x < 2\pi0≤x<2π: tanx+sin2x=0\tan x + \sin 2x = 0tanx+sin2x=0.
3cos2x−4sinx=13\cos^2 x - 4\sin x = 13cos2x−4sinx=1
for xxx in [0,2π)[0, 2\pi)[0,2π).
tan(2x)=3,\tan(2x)=\sqrt{3},tan(2x)=3,
giving the general solution.
Solve for xxx in 0≤x<2π0 \le x < 2\pi0≤x<2π: 2cos2x−sinx=12\cos^2 x - \sin x = 12cos2x−sinx=1.
Consider the equation cos2x=cosx\cos 2x = \cos xcos2x=cosx.
Solve for xxx in the interval 0≤x<2π0 \le x < 2\pi0≤x<2π.
Solve for xxx in 0≤x<2π0 \le x < 2\pi0≤x<2π: sin(x+π3)=cos(2x)\sin\left(x + \frac{\pi}{3}\right) = \cos(2x)sin(x+3π)=cos(2x).
Solve for xxx in 0≤x<2π0 \leq x < 2\pi0≤x<2π: cosxcos2x=sinxsin2x\cos x \cos 2x = \sin x \sin 2xcosxcos2x=sinxsin2x.
Previous
Question Type 5: Solving simple expressions for the value of x
Next
Question Type 7: Determining if the triangles suffer from ambiguous case of sine rule