Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the mode of the PDF f(x)=x2f(x)=x^2f(x)=x2 for 0<x<10<x<10<x<1.
Find the mode of the PDF f(x)=1−(x−1)2f(x)=1-(x-1)^2f(x)=1−(x−1)2 for 1<x<21<x<21<x<2.
Let f(x)=k(1−(x−1)2)f(x)=k\bigl(1-(x-1)^2\bigr)f(x)=k(1−(x−1)2) for 1<x<21<x<21<x<2 and f(x)=0f(x)=0f(x)=0 otherwise. (a) Find kkk. (b) Determine the mode of fff.
For the PDF
f(x)={x2,0<x<1,1−(x−1)2,1<x<2,0,otherwise,f(x)=\begin{cases} x^2,&0<x<1,\\ 1-(x-1)^2,&1<x<2,\\ 0,&\text{otherwise,} \end{cases}f(x)=⎩⎨⎧x2,1−(x−1)2,0,0<x<1,1<x<2,otherwise,
determine the intervals on which f(x)f(x)f(x) is increasing and decreasing, and use this to justify the mode location.
Consider the piecewise PDF
Find the mode(s) of this distribution.
Let f(x)=k x2f(x)=k\,x^2f(x)=kx2 for 0<x<10<x<10<x<1 and f(x)=0f(x)=0f(x)=0 otherwise. (a) Determine kkk to make fff a PDF. (b) Find the mode of this distribution.
For the piecewise PDF
derive the cumulative distribution function F(x)F(x)F(x) for all real xxx, and then identify the mode.
A random variable XXX has the piecewise PDF
Compute f′(x)f'(x)f′(x) on each interval, determine the critical point, and hence find the mode.
Suppose XXX has PDF f(x)=k xαf(x)=k\,x^{\alpha}f(x)=kxα for 0<x<10<x<10<x<1, where α>0\alpha>0α>0. (a) Determine kkk. (b) Find the mode in terms of α\alphaα. (c) Evaluate the mode for α=2\alpha=2α=2.
Given the PDF
compute the second derivative f′′(x)f''(x)f′′(x) at the mode and verify it is a maximum.
Let Y=X3Y=X^3Y=X3 where XXX has PDF fX(x)=x2f_X(x)=x^2fX(x)=x2 for 0<x<10<x<10<x<1 and 000 otherwise. Find the mode of YYY.
Let Y=lnXY=\ln XY=lnX where XXX has PDF fX(x)=x2f_X(x)=x^2fX(x)=x2 for 0<x<10<x<10<x<1 and fX(x)=0f_X(x)=0fX(x)=0 otherwise. Find the mode of YYY.
Previous
Question Type 4: Finding the median for a given PDF
Next
Question Type 6: Finding the expected value for a given continuous distribution and PDF