Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
For the piecewise PDF
derive the cumulative distribution function F(x)F(x)F(x) for all real xxx, and then identify the mode.
Let f(x)=k x2f(x)=k\,x^2f(x)=kx2 for 0<x<10<x<10<x<1 and f(x)=0f(x)=0f(x)=0 otherwise.
(a) Determine kkk to make fff a PDF.
(b) Find the mode of this distribution.
Let f(x)=k(1−(x−1)2)f(x)=k\bigl(1-(x-1)^2\bigr)f(x)=k(1−(x−1)2) for 1<x<21 < x < 21<x<2 and f(x)=0f(x)=0f(x)=0 otherwise.
Find the value of kkk.
Determine the mode of fff.
Find the mode of the probability density function f(x)=3x2f(x) = 3x^2f(x)=3x2 for 0≤x≤10 \le x \le 10≤x≤1.
Find the mode of the probability density function f(x)=32(1−(x−1)2)f(x)=\frac{3}{2}(1-(x-1)^2)f(x)=23(1−(x−1)2) for 1≤x≤21 \le x \le 21≤x≤2.
A random variable XXX has the piecewise PDF
Compute f′(x)f'(x)f′(x) on each interval, determine the critical point, and hence find the mode.
Suppose XXX has probability density function (PDF) f(x)=kxαf(x)=k x^{\alpha}f(x)=kxα for 0<x<10<x<10<x<1, where α>0\alpha>0α>0.
Determine the value of kkk.
Find the mode of XXX in terms of α\alphaα.
Evaluate the mode for α=2\alpha=2α=2.
Let Y=lnXY=\ln XY=lnX where XXX has PDF fX(x)=3x2f_X(x)=3x^2fX(x)=3x2 for 0<x<10<x<10<x<1 and fX(x)=0f_X(x)=0fX(x)=0 otherwise. Find the mode of YYY.
Consider the piecewise PDF
Find the mode(s) of this distribution.
For the PDF
determine the intervals on which f(x)f(x)f(x) is increasing and decreasing, and use this to justify the mode location.
Given the probability density function (PDF): f(x)={x2,0<x≤11−(x−1)2,1<x<20,otherwisef(x)=\begin{cases} x^2, & 0 < x \le 1 \\ 1-(x-1)^2, & 1 < x < 2 \\ 0, & \text{otherwise} \end{cases}f(x)=⎩⎨⎧x2,1−(x−1)2,0,0<x≤11<x<2otherwise
State the mode of the distribution.
Find f′′(x)f''(x)f′′(x) for the interval 1<x<21 < x < 21<x<2.
Justify that the mode is a maximum.
Let Y=X3Y=X^3Y=X3 where XXX has PDF fX(x)=3x2f_X(x)=3x^2fX(x)=3x2 for 0<x<10<x<10<x<1 and 000 otherwise. Find the mode of YYY.
Previous
Question Type 4: Finding the median for a given PDF
Next
Question Type 6: Finding the expected value for a given continuous distribution and PDF