Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the expected value of a random variable XXX that is uniformly distributed on [0,5][0,5][0,5] with pdf f(x)=15f(x)=\tfrac{1}{5}f(x)=51 for 0≤x≤50\le x\le50≤x≤5.
The pdf of XXX is given by f(x)=kxf(x)=kxf(x)=kx for 0≤x≤20\le x\le20≤x≤2, and 0 otherwise. Determine kkk and find E(X)E(X)E(X).
Let XXX have pdf f(x)=38x2f(x)=\tfrac{3}{8}x^2f(x)=83x2 for 0≤x≤20\le x\le20≤x≤2. Compute the expected value E(X)E(X)E(X).
For a random variable XXX with pdf f(x)=34(1−x2)f(x)=\tfrac{3}{4}(1-x^2)f(x)=43(1−x2) for −1≤x≤1-1\le x\le1−1≤x≤1, find E(X)E(X)E(X).
A random variable XXX has pdf f(x)=ke−x/2f(x)=ke^{-x/2}f(x)=ke−x/2 for x>0x>0x>0. Find kkk and E(X)E(X)E(X).
If XXX has pdf f(x)=6x(1−x)f(x)=6x(1-x)f(x)=6x(1−x) for 0<x<10<x<10<x<1, find the expected value E(X)E(X)E(X).
Find the expected value of a random variable XXX with pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x for x>0x>0x>0.
Given a random variable XXX with pdf f(x)=4e−4xf(x)=4e^{-4x}f(x)=4e−4x for x>0x>0x>0, calculate P(X>12)P(X>12)P(X>12).
The pdf of XXX is defined by f(x)={ax,0<x<1,a(2−x),1<x<2,0,otherwise.f(x)=\begin{cases} ax,&0<x<1,\\ a(2-x),&1<x<2,\\ 0,&\text{otherwise}. \end{cases}f(x)=⎩⎨⎧ax,a(2−x),0,0<x<1,1<x<2,otherwise.Determine aaa and compute E(X)E(X)E(X).
Let XXX have pdf f(x)=βαΓ(α)xα−1e−βxfor x>0.\displaystyle f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}\quad\text{for }x>0.f(x)=Γ(α)βαxα−1e−βxfor x>0.Express E(X)E(X)E(X) in terms of α\alphaα and β\betaβ.
Consider the pdf f(x)=cx4f(x)=\tfrac{c}{x^4}f(x)=x4c for x≥1x\ge1x≥1. Find ccc and evaluate whether E(X)E(X)E(X) converges or diverges.
The pdf of XXX is f(x)=kx−3f(x)=kx^{-3}f(x)=kx−3 for x≥1x\ge1x≥1 and 0 otherwise. Determine kkk and state whether E(X)E(X)E(X) exists.
Previous
Question Type 5: Finding the mode for a given PDF
Next
Question Type 7: Finding the variance for a given continuous distribution and PDF