Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Determine the inverse of f(x)=ln(x)f(x) = \sqrt{\ln(x)}f(x)=ln(x), for x≥1x \ge 1x≥1.
Find the inverse of f(x)=ln((x−4)4)f(x) = \ln\bigl((x - 4)^4\bigr)f(x)=ln((x−4)4), for x>4x>4x>4.
Find the inverse of f(x)=ln(x−1)f(x) = \ln\bigl(\sqrt{x - 1}\bigr)f(x)=ln(x−1), for x>1x>1x>1.
Determine the inverse of f(x)=ln(5x+2)f(x) = \ln\bigl(5^x + 2\bigr)f(x)=ln(5x+2).
Determine the inverse of f(x)=12ln(5−3x)f(x) = \tfrac12\ln(5 - 3x)f(x)=21ln(5−3x), where x<53x<\tfrac{5}{3}x<35.
Find f−1(x)f^{-1}(x)f−1(x) if f(x)=5−ln(2x)f(x) = \sqrt{5 - \ln(2x)}f(x)=5−ln(2x), 0<x≤e520< x \le \tfrac{e^5}{2}0<x≤2e5.
Determine the inverse of f(x)=e(x+2)3−1f(x) = e^{(x+2)^3} - 1f(x)=e(x+2)3−1.
Find f−1(x)f^{-1}(x)f−1(x) for f(x)=ln(x2+1)f(x) = \sqrt{\ln(x^2 + 1)}f(x)=ln(x2+1), where x≥0x\ge0x≥0.
Find the inverse of f(x)=10ln(7x3−3)f(x) = 10\sqrt{\ln(7x^3 - 3)}f(x)=10ln(7x3−3), where x≥(47)1/3x \ge (\tfrac{4}{7})^{1/3}x≥(74)1/3.
Find f−1(x)f^{-1}(x)f−1(x) if f(x)=3ln(x+12)5f(x)=3\sqrt[5]{\ln\bigl(\tfrac{x+1}{2}\bigr)}f(x)=35ln(2x+1), for x>−1x>-1x>−1.
Determine the inverse of f(x)=ln(2x+13−x)f(x) = \ln\bigl(\tfrac{2x + 1}{3 - x}\bigr)f(x)=ln(3−x2x+1), for x<3x<3x<3.
Find the inverse of f(x)=ln(x)+1ln(x)−1f(x) = \dfrac{\ln(x) + 1}{\ln(x) - 1}f(x)=ln(x)−1ln(x)+1, for x>1x>1x>1, x≠ex\neq ex=e.
Previous
Question Type 4: Finding the inverse with domain restriction
Next
Question Type 6: Showing whether a function is self-inverse or not