Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=∣3x−2∣+1f(x)=|3x-2|+1f(x)=∣3x−2∣+1 with the domain restriction x≥23x\ge \tfrac{2}{3}x≥32. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=(x−2)2+5f(x)=(x-2)^2+5f(x)=(x−2)2+5 with the domain restriction x≥2x\ge 2x≥2. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=−(x+1)2+7f(x)=-(x+1)^2+7f(x)=−(x+1)2+7 with the domain restriction x≤−1x\le -1x≤−1. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=4ln(x2−9)f(x)=4\ln(x^2-9)f(x)=4ln(x2−9) with the domain restriction x>3x>3x>3. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=3ln(2−x)+5f(x)=3\ln(2-x)+5f(x)=3ln(2−x)+5 with the domain restriction x<2x<2x<2. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=ex2−1f(x)=e^{x^2-1}f(x)=ex2−1 with the domain restriction x≥0x\ge 0x≥0. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=ln(10−x2)f(x)=\ln(10-x^2)f(x)=ln(10−x2) with the domain restriction 0<x<100<x<\sqrt{10}0<x<10. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=−2(x−3)2+1f(x)=-2(x-3)^2+1f(x)=−2(x−3)2+1 with the domain restriction x≥3x\ge 3x≥3. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=(x−2)2+4f(x)=\sqrt{(x-2)^2+4}f(x)=(x−2)2+4 with the domain restriction x≥2x\ge 2x≥2. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=sin(2x−π6)f(x)=\sin(2x-\tfrac{\pi}{6})f(x)=sin(2x−6π) with the domain restriction −π6≤x≤π3-\tfrac{\pi}{6}\le x\le \tfrac{\pi}{3}−6π≤x≤3π. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=cos(2x+π4)f(x)=\cos(2x+\tfrac{\pi}{4})f(x)=cos(2x+4π) with the domain restriction −π8≤x≤3π8-\tfrac{\pi}{8}\le x\le \tfrac{3\pi}{8}−8π≤x≤83π. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=ln (x−1x+1)f(x)=\ln\!\bigg(\dfrac{x-1}{x+1}\bigg)f(x)=ln(x+1x−1) with the domain restriction x>1x>1x>1. State the domain of f−1f^{-1}f−1.
Find the inverse function f−1(x)f^{-1}(x)f−1(x) for f(x)=x+1xf(x)=x+\dfrac{1}{x}f(x)=x+x1 with the domain restriction x≥1x\ge 1x≥1. State the domain of f−1f^{-1}f−1.
Previous
Question Type 3: Graphing odd, even or neither functions
Next
Question Type 5: Finding the inverse of more complex equations and restrictions on the domain