Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the magnitude of the vector v=(−25)\mathbf{v} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}v=(−25) and its unit vector.
Find the magnitude of the vector v=(0−724)\mathbf{v} = \begin{pmatrix} 0 \\ -7 \\ 24 \end{pmatrix}v=0−724 and its unit vector.
Find the magnitude of the vector v=(2−12)\mathbf{v} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}v=2−12 and its unit vector.
Find the magnitude of the vector v=(−312)\mathbf{v} = \begin{pmatrix} -\sqrt{3} \\ 1 \\ 2 \end{pmatrix}v=−312 and its unit vector.
Find the magnitude of the vector v=(−3412)\mathbf{v} = \begin{pmatrix} -3 \\ 4 \\ 12 \end{pmatrix}v=−3412 and its unit vector.
Find the magnitude of the vector v=(5−55)\mathbf{v} = \begin{pmatrix} 5 \\ -5 \\ 5 \end{pmatrix}v=5−55 and its unit vector.
Find the magnitude of the vector v=(12−32)\mathbf{v} = \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix}v=(21−23) and its unit vector.
Find the magnitude of the vector v=(122)\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}v=122 and the unit vector in the direction of v\mathbf{v}v.
Find the magnitude of the vector v=(222)\mathbf{v} = \begin{pmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{pmatrix}v=222 and a unit vector in the direction of v\mathbf{v}v.
Find the magnitude of the vector v=(32−320)\mathbf{v} = \begin{pmatrix} \frac{3}{2} \\ -\frac{3}{2} \\ 0 \end{pmatrix}v=23−230 and find a unit vector in the direction of v\mathbf{v}v.
Find the magnitude of the vector v=(1−11−1)\mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}v=1−11−1 in R4\mathbb{R}^4R4 and its unit vector.
Find the magnitude of the vector v=(34)\mathbf{v} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}v=(34) and its unit vector.
Previous
Question Type 3: Doing simple calculations with vectors
Next
Question Type 5: Finding distance between any two simple vectors