Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Compute 3v+w3v + w3v+w where v=(461)v = \begin{pmatrix} 4 \\ 6 \\ 1 \end{pmatrix}v=461 and w=(343)w = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}w=343.
Given v=(4,6,1)\mathbf{v} = (4, 6, 1)v=(4,6,1) and w=(3,4,3)\mathbf{w} = (3, 4, 3)w=(3,4,3), compute −v+4w-\mathbf{v} + 4\mathbf{w}−v+4w.
Determine a unit vector perpendicular to both v=(461)\mathbf{v} = \begin{pmatrix} 4 \\ 6 \\ 1 \end{pmatrix}v=461 and w=(343)\mathbf{w} = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}w=343.
Compute the distance between the points represented by v=(4,6,1)v=(4,6,1)v=(4,6,1) and 2w=2(3,4,3)2w=2(3,4,3)2w=2(3,4,3).
Determine the magnitude of the vector −v+4w-\mathbf{v} + 4\mathbf{w}−v+4w given v=(4,6,1)\mathbf{v} = (4,6,1)v=(4,6,1) and w=(3,4,3)\mathbf{w} = (3,4,3)w=(3,4,3).
Calculate the dot product v⋅w\mathbf{v} \cdot \mathbf{w}v⋅w given v=(461)\mathbf{v} = \begin{pmatrix} 4 \\ 6 \\ 1 \end{pmatrix}v=461 and w=(343)\mathbf{w} = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}w=343.
Find the projection of v=(4,6,1)\mathbf{v}=(4, 6, 1)v=(4,6,1) onto w=(3,4,3)\mathbf{w}=(3, 4, 3)w=(3,4,3).
Compute 2v−3w2\mathbf{v} - 3\mathbf{w}2v−3w for v=(461)\mathbf{v} = \begin{pmatrix} 4 \\ 6 \\ 1 \end{pmatrix}v=461 and w=(343)\mathbf{w} = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}w=343.
Calculate the angle θ\thetaθ between the vectors v=(461)\mathbf{v} = \begin{pmatrix} 4 \\ 6 \\ 1 \end{pmatrix}v=461 and w=(343)\mathbf{w} = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}w=343.
Find the cross product v×w\mathbf{v} \times \mathbf{w}v×w for v=(461)\mathbf{v} = \begin{pmatrix} 4 \\ 6 \\ 1 \end{pmatrix}v=461 and w=(343)\mathbf{w} = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}w=343.
Find v−2w\mathbf{v} - 2\mathbf{w}v−2w for v=(4,6,1)\mathbf{v} = (4, 6, 1)v=(4,6,1) and w=(3,4,3)\mathbf{w} = (3, 4, 3)w=(3,4,3).
Find the unit vector in the direction of −v+4w-\mathbf{v} + 4\mathbf{w}−v+4w for v=(461)\mathbf{v} = \begin{pmatrix} 4 \\ 6 \\ 1 \end{pmatrix}v=461 and w=(343)\mathbf{w} = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}w=343.
Previous
Question Type 2: Finding a vector given two points in 3D
Next
Question Type 4: Finding the magnitude of vectors