Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find v−2wv - 2wv−2w for v=(4,6,1)v = (4,6,1)v=(4,6,1) and w=(3,4,3)w = (3,4,3)w=(3,4,3).
Given v=(4,6,1)v = (4,6,1)v=(4,6,1) and w=(3,4,3)w = (3,4,3)w=(3,4,3), compute −v+4w-v + 4w−v+4w.
Compute the dot product v⋅wv \cdot wv⋅w for v=(4,6,1)v = (4,6,1)v=(4,6,1) and w=(3,4,3)w = (3,4,3)w=(3,4,3).
Compute 3v+w3v + w3v+w where v=(4,6,1)v = (4,6,1)v=(4,6,1) and w=(3,4,3)w = (3,4,3)w=(3,4,3).
Compute 2v−3w2v - 3w2v−3w for v=(4,6,1)v = (4,6,1)v=(4,6,1) and w=(3,4,3)w = (3,4,3)w=(3,4,3).
Compute the distance between the points represented by v=(4,6,1)v=(4,6,1)v=(4,6,1) and 2w=2(3,4,3)2w=2(3,4,3)2w=2(3,4,3).
Determine the magnitude of the vector −v+4w-v + 4w−v+4w given v=(4,6,1)v = (4,6,1)v=(4,6,1) and w=(3,4,3)w = (3,4,3)w=(3,4,3).
Find the unit vector in the direction of −v+4w-v + 4w−v+4w for v=(4,6,1)v=(4,6,1)v=(4,6,1) and w=(3,4,3)w=(3,4,3)w=(3,4,3).
Calculate the angle θ\thetaθ between v=(4,6,1)v=(4,6,1)v=(4,6,1) and w=(3,4,3)w=(3,4,3)w=(3,4,3).
Find the projection of v=(4,6,1)v=(4,6,1)v=(4,6,1) onto w=(3,4,3)w=(3,4,3)w=(3,4,3).
Find the cross product v×wv \times wv×w for v=(4,6,1)v=(4,6,1)v=(4,6,1) and w=(3,4,3)w=(3,4,3)w=(3,4,3).
Determine a unit vector perpendicular to both v=(4,6,1)v=(4,6,1)v=(4,6,1) and w=(3,4,3)w=(3,4,3)w=(3,4,3).
Previous
Question Type 2: Finding a vector given two points in 3D
Next
Question Type 4: Finding the magnitude of vectors