Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Compute the area of the triangle with vertices at the origin, a=(2,1,2)\mathbf{a}=(2,1,2)a=(2,1,2) and b=(1,2,1)\mathbf{b}=(1,2,1)b=(1,2,1).
Compute the area of the parallelogram spanned by a=(2,1,2)\mathbf{a}=(2,1,2)a=(2,1,2) and b=(1,2,1)\mathbf{b}=(1,2,1)b=(1,2,1).
Compute the area of the parallelogram spanned by 2a2\mathbf{a}2a and 3b3\mathbf{b}3b, where a=(2,1,2)\mathbf{a}=(2,1,2)a=(2,1,2) and b=(1,2,1)\mathbf{b}=(1,2,1)b=(1,2,1).
Given points P(0,0,0)P(0,0,0)P(0,0,0), Q(2,1,2)Q(2,1,2)Q(2,1,2) and R(1,2,1)R(1,2,1)R(1,2,1), compute the area of triangle PQRPQRPQR.
Compute the area of the triangle spanned by 3a3\mathbf{a}3a and 4b4\mathbf{b}4b where a=(2,1,2)\mathbf{a}=(2,1,2)a=(2,1,2), b=(1,2,1)\mathbf{b}=(1,2,1)b=(1,2,1).
Compute the area of the parallelogram whose diagonals are given by a=(2,1,2)\mathbf{a}=(2,1,2)a=(2,1,2) and b=(1,2,1)\mathbf{b}=(1,2,1)b=(1,2,1).
Let c=a+b\mathbf{c}=\mathbf{a}+\mathbf{b}c=a+b and d=a−b\mathbf{d}=\mathbf{a}-\mathbf{b}d=a−b for a=(2,1,2)\mathbf{a}=(2,1,2)a=(2,1,2), b=(1,2,1)\mathbf{b}=(1,2,1)b=(1,2,1). Compute the area of the parallelogram spanned by c\mathbf{c}c and d\mathbf{d}d.
Find the area of the projection of the parallelogram spanned by a=(2,1,2)\mathbf{a}=(2,1,2)a=(2,1,2) and b=(1,2,1)\mathbf{b}=(1,2,1)b=(1,2,1) onto the xyxyxy-plane.
Find the acute angle between a=(2,1,2)\mathbf{a}=(2,1,2)a=(2,1,2) and b=(1,2,1)\mathbf{b}=(1,2,1)b=(1,2,1), then compute the area of the parallelogram these vectors span.
The linear transformation T:R3→R3T:\mathbb R^3\to\mathbb R^3T:R3→R3 has matrix
Find the area of the image of the parallelogram spanned by a=(2,1,2)\mathbf{a}=(2,1,2)a=(2,1,2) and b=(1,2,1)\mathbf{b}=(1,2,1)b=(1,2,1) under TTT.
Compute the area of the parallelogram spanned by a=(2,1,2)\mathbf{a}=(2,1,2)a=(2,1,2) and the unit vector perpendicular to b=(1,2,1)\mathbf{b}=(1,2,1)b=(1,2,1) in the direction of a×b\mathbf{a}\times\mathbf{b}a×b.
Previous
Question Type 3: Simplifying vector operations with dot and cross product
Next
No next topic