Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Verify that v⋅(v×w)=0v\cdot(v\times w)=0v⋅(v×w)=0 for v=(1,2,3)v=(1,2,3)v=(1,2,3) and w=(4,5,6)w=(4,5,6)w=(4,5,6) by direct computation.
Simplify the dot product expression (v+w)⋅(v−w)(v + w)\cdot(v - w)(v+w)⋅(v−w) in terms of ∣v∣|v|∣v∣ and ∣w∣|w|∣w∣.
Given a×(b+c)=(1,2,3)a\times(b + c) = (1,2,3)a×(b+c)=(1,2,3) and a×b=(0,1,−1)a\times b = (0,1,-1)a×b=(0,1,−1), find a×ca\times ca×c.
Compute the cross product (i+2j)×(3i−j+k)(\mathbf{i} + 2\mathbf{j})\times(3\mathbf{i} - \mathbf{j} + \mathbf{k})(i+2j)×(3i−j+k).
Given vectors aaa and bbb with a⋅b=5a\cdot b = 5a⋅b=5, ∣a∣=3|a|=3∣a∣=3, ∣b∣=4|b|=4∣b∣=4, compute a⋅(2a−b)a\cdot(2a - b)a⋅(2a−b).
Let uuu and vvv be perpendicular vectors with ∣u∣=2|u|=2∣u∣=2 and ∣v∣=3|v|=3∣v∣=3. If w=u−2vw = u - 2vw=u−2v, find ∣w∣|w|∣w∣.
Let m=(1,0,−1)m = (1,0,-1)m=(1,0,−1) and n=(2,1,3)n = (2,1,3)n=(2,1,3). Calculate (m+2n)⋅(3m−n)(m + 2n)\cdot(3m - n)(m+2n)⋅(3m−n).
Given the scalar triple product v⋅(w×u)=5v\cdot(w\times u)=5v⋅(w×u)=5, determine w⋅(u×v)w\cdot(u\times v)w⋅(u×v).
Given v×w=−(1,0,1)v \times w = -(1,0,1)v×w=−(1,0,1) and w=(2,2,2)w = (2,2,2)w=(2,2,2), find w×(v+(1,0,1))w \times \bigl(v + (1,0,1)\bigr)w×(v+(1,0,1)).
Given u×v=(3,−1,2)u \times v = (3,-1,2)u×v=(3,−1,2) and v×w=(1,4,−3)v \times w = (1,4,-3)v×w=(1,4,−3), compute (u+w)×v(u + w) \times v(u+w)×v.
Suppose v×w=(3,1,−2)v\times w=(3,1,-2)v×w=(3,1,−2), w×u=(0,2,1)w\times u=(0,2,1)w×u=(0,2,1) and u×v=(−3,1,1)u\times v=(-3,1,1)u×v=(−3,1,1). Compute (v+w+u)×(w+u)(v + w + u)\times(w + u)(v+w+u)×(w+u).
Previous
Question Type 2: Finding the cross product using different operations of vectors
Next
Question Type 4: Finding the area of a parallelogram or triangle given two vectors