Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Simplify the dot product expression (v+w)⋅(v−w)(\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w})(v+w)⋅(v−w) in terms of ∣v∣|\mathbf{v}|∣v∣ and ∣w∣|\mathbf{w}|∣w∣.
Let m=(10−1)\mathbf{m} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}m=10−1 and n=(213)\mathbf{n} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}n=213. Calculate (m+2n)⋅(3m−n)(\mathbf{m} + 2\mathbf{n})\cdot(3\mathbf{m} - \mathbf{n})(m+2n)⋅(3m−n).
Compute the cross product (i+2j)×(3i−j+k)(\mathbf{i} + 2\mathbf{j})\times(3\mathbf{i} - \mathbf{j} + \mathbf{k})(i+2j)×(3i−j+k).
Let u\mathbf{u}u and v\mathbf{v}v be perpendicular vectors with ∣u∣=2|\mathbf{u}|=2∣u∣=2 and ∣v∣=3|\mathbf{v}|=3∣v∣=3. If w=u−2v\mathbf{w} = \mathbf{u} - 2\mathbf{v}w=u−2v, find ∣w∣|\mathbf{w}|∣w∣.
Given v×w=(−101)\boldsymbol{v} \times \boldsymbol{w} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}v×w=−101 and w=(222)\boldsymbol{w} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}w=222, find w×(v+(101))\boldsymbol{w} \times \left(\boldsymbol{v} + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}\right)w×v+101.
Given the scalar triple product v⋅(w×u)=5\mathbf{v}\cdot(\mathbf{w}\times \mathbf{u})=5v⋅(w×u)=5, determine w⋅(u×v)\mathbf{w}\cdot(\mathbf{u}\times \mathbf{v})w⋅(u×v).
Given a×(b+c)=(1,2,3)\mathbf{a}\times(\mathbf{b} + \mathbf{c}) = (1, 2, 3)a×(b+c)=(1,2,3) and a×b=(0,1,−1)\mathbf{a}\times \mathbf{b} = (0, 1, -1)a×b=(0,1,−1), find a×c\mathbf{a}\times \mathbf{c}a×c.
Given vectors a\mathbf{a}a and b\mathbf{b}b with a⋅b=5\mathbf{a}\cdot \mathbf{b} = 5a⋅b=5, ∣a∣=3|\mathbf{a}|=3∣a∣=3, ∣b∣=4|\mathbf{b}|=4∣b∣=4, compute a⋅(2a−b)\mathbf{a}\cdot(2\mathbf{a} - \mathbf{b})a⋅(2a−b).
Suppose v×w=(3,1,−2)\mathbf{v}\times \mathbf{w}=(3,1,-2)v×w=(3,1,−2), w×u=(0,2,1)\mathbf{w}\times \mathbf{u}=(0,2,1)w×u=(0,2,1) and u×v=(−3,1,1)\mathbf{u}\times \mathbf{v}=(-3,1,1)u×v=(−3,1,1). Compute (v+w+u)×(w+u)(\mathbf{v} + \mathbf{w} + \mathbf{u})\times(\mathbf{w} + \mathbf{u})(v+w+u)×(w+u).
Verify that v⋅(v×w)=0\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w}) = 0v⋅(v×w)=0 for v=(123)\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}v=123 and w=(456)\mathbf{w} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}w=456 by direct computation.
Given u×v=(3,−1,2)\mathbf{u} \times \mathbf{v} = (3,-1,2)u×v=(3,−1,2) and v×w=(1,4,−3)\mathbf{v} \times \mathbf{w} = (1,4,-3)v×w=(1,4,−3), compute (u+w)×v(\mathbf{u} + \mathbf{w}) \times \mathbf{v}(u+w)×v.
Previous
Question Type 2: Finding the cross product using different operations of vectors
Next
Question Type 4: Finding the area of a parallelogram or triangle given two vectors