Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Determine whether 4a−b+c4\mathbf{a} - \mathbf{b} + \mathbf{c}4a−b+c is orthogonal to a+3b−2c\mathbf{a} + 3\mathbf{b} - 2\mathbf{c}a+3b−2c, where a=(134)\mathbf{a}=\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(101)\mathbf{b}=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101 and c=(010)\mathbf{c}=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Determine whether the vector 2a−3b2\mathbf{a} - 3\mathbf{b}2a−3b is parallel, perpendicular, or neither to the vector a+b\mathbf{a} + \mathbf{b}a+b, where a=(1,3,4)\mathbf{a}=(1,3,4)a=(1,3,4) and b=(1,0,1)\mathbf{b}=(1,0,1)b=(1,0,1).
Are the vectors a−3b+c\mathbf{a} - 3\mathbf{b} + \mathbf{c}a−3b+c and −2a+6b−2c-2\mathbf{a} + 6\mathbf{b} - 2\mathbf{c}−2a+6b−2c parallel, perpendicular, or neither? Use a=(134)\mathbf{a}=\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(101)\mathbf{b}=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101, c=(010)\mathbf{c}=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Determine whether 3(a−b)+4c3(\mathbf{a} - \mathbf{b}) + 4\mathbf{c}3(a−b)+4c is parallel, perpendicular, or neither to −6(a−b)−8c-6(\mathbf{a} - \mathbf{b}) - 8\mathbf{c}−6(a−b)−8c, where a=(134)\mathbf{a}=\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(101)\mathbf{b}=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101 and c=(010)\mathbf{c}=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Determine whether the vectors a+2c\boldsymbol{a} + 2\boldsymbol{c}a+2c and 4b−c4\boldsymbol{b} - \boldsymbol{c}4b−c are parallel, perpendicular, or neither, where a=(134)\boldsymbol{a}=\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(101)\boldsymbol{b}=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101, and c=(010)\boldsymbol{c}=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Determine whether the vector 3a−b+c3\mathbf{a} - \mathbf{b} + \mathbf{c}3a−b+c is perpendicular to a−2c\mathbf{a} - 2\mathbf{c}a−2c, where a=(134)\mathbf{a}=\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(101)\mathbf{b}=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101, and c=(010)\mathbf{c}=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Determine whether the vectors 2a+3b2\mathbf{a} + 3\mathbf{b}2a+3b and −4a−6b-4\mathbf{a} - 6\mathbf{b}−4a−6b are parallel, perpendicular, or neither, where a=(134)\mathbf{a}=\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134 and b=(101)\mathbf{b}=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101.
Determine whether the vector a+(b+c)\mathbf{a} + (\mathbf{b} + \mathbf{c})a+(b+c) is perpendicular, parallel, or neither to the vector a−(b−c)\mathbf{a} - (\mathbf{b} - \mathbf{c})a−(b−c), given a=(134)\mathbf{a}=\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(101)\mathbf{b}=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101, and c=(010)\mathbf{c}=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Determine if the vectors a+2b−c\boldsymbol{a} + 2\boldsymbol{b} - \boldsymbol{c}a+2b−c and 2a−4b+2c2\boldsymbol{a} - 4\boldsymbol{b} + 2\boldsymbol{c}2a−4b+2c are parallel, perpendicular, or neither, where a=(134)\boldsymbol{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(101)\boldsymbol{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101 and c=(010)\boldsymbol{c} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Determine if the vector 5a−2c5\mathbf{a} - 2\mathbf{c}5a−2c is perpendicular to 2a+b2\mathbf{a} + \mathbf{b}2a+b, given a=(134)\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(101)\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101 and c=(010)\mathbf{c} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Consider the vectors a=(134)\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(101)\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101, and c=(010)\mathbf{c} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Determine whether the vectors u=a−b+2c\mathbf{u} = \mathbf{a} - \mathbf{b} + 2\mathbf{c}u=a−b+2c and v=3a+6b−4c\mathbf{v} = 3\mathbf{a} + 6\mathbf{b} - 4\mathbf{c}v=3a+6b−4c are parallel, perpendicular, or neither.
Given a=(134)\boldsymbol{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(101)\boldsymbol{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}b=101, and c=(010)\boldsymbol{c} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010, determine whether the vector a+b+c\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}a+b+c is parallel to b+2c\boldsymbol{b} + 2\boldsymbol{c}b+2c.
Previous
Question Type 3: Finding the angle between vectors
Next
Question Type 5: Finding for what value of a parameter are 2 vectors parallel or perpendicular