Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Are the vectors 2a+3b2a + 3b2a+3b and −4a−6b-4a - 6b−4a−6b parallel, perpendicular, or neither? Here a=(1,3,4)a=(1,3,4)a=(1,3,4) and b=(1,0,1)b=(1,0,1)b=(1,0,1).
Determine whether the vectors a+2ca + 2ca+2c and 4b−c4b - c4b−c are parallel, perpendicular, or neither, where a=(1,3,4)a=(1,3,4)a=(1,3,4), b=(1,0,1)b=(1,0,1)b=(1,0,1), c=(0,1,0)c=(0,1,0)c=(0,1,0).
Determine whether the vector 2a−3b2a - 3b2a−3b is parallel, perpendicular, or neither to the vector a+ba + ba+b, where a=(1,3,4)a=(1,3,4)a=(1,3,4) and b=(1,0,1)b=(1,0,1)b=(1,0,1).
Determine if the vectors a+2b−ca + 2b - ca+2b−c and 2a−4b+2c2a - 4b + 2c2a−4b+2c are parallel, perpendicular, or neither. Here a=(1,3,4)a=(1,3,4)a=(1,3,4), b=(1,0,1)b=(1,0,1)b=(1,0,1), c=(0,1,0)c=(0,1,0)c=(0,1,0).
Is the vector a+b+ca + b + ca+b+c parallel to b+2cb + 2cb+2c? Use a=(1,3,4)a=(1,3,4)a=(1,3,4), b=(1,0,1)b=(1,0,1)b=(1,0,1), c=(0,1,0)c=(0,1,0)c=(0,1,0).
Are the vectors a−3b+ca - 3b + ca−3b+c and −2a+6b−2c-2a + 6b - 2c−2a+6b−2c parallel, perpendicular, or neither? Use a=(1,3,4)a=(1,3,4)a=(1,3,4), b=(1,0,1)b=(1,0,1)b=(1,0,1), c=(0,1,0)c=(0,1,0)c=(0,1,0).
Check if the vector 3a−b+c3a - b + c3a−b+c is perpendicular to a−2ca - 2ca−2c, where a=(1,3,4)a=(1,3,4)a=(1,3,4), b=(1,0,1)b=(1,0,1)b=(1,0,1), c=(0,1,0)c=(0,1,0)c=(0,1,0).
Determine if the vector 5a−2c5a - 2c5a−2c is perpendicular to 2a+b2a + b2a+b, given a=(1,3,4)a=(1,3,4)a=(1,3,4), b=(1,0,1)b=(1,0,1)b=(1,0,1), c=(0,1,0)c=(0,1,0)c=(0,1,0).
Decide whether a−b+2ca - b + 2ca−b+2c and 3a+6b−4c3a + 6b - 4c3a+6b−4c are parallel, perpendicular, or neither, where a=(1,3,4)a=(1,3,4)a=(1,3,4), b=(1,0,1)b=(1,0,1)b=(1,0,1), c=(0,1,0)c=(0,1,0)c=(0,1,0).
Check if 4a−b+c4a - b + c4a−b+c is orthogonal to a+3b−2ca + 3b - 2ca+3b−2c, where a=(1,3,4)a=(1,3,4)a=(1,3,4), b=(1,0,1)b=(1,0,1)b=(1,0,1), c=(0,1,0)c=(0,1,0)c=(0,1,0).
Is the vector a+(b+c)a + (b + c)a+(b+c) perpendicular or parallel to a−(b−c)a - (b - c)a−(b−c), given a=(1,3,4)a=(1,3,4)a=(1,3,4), b=(1,0,1)b=(1,0,1)b=(1,0,1), c=(0,1,0)c=(0,1,0)c=(0,1,0)?
Check if 3(a−b)+4c3(a - b) + 4c3(a−b)+4c is parallel, perpendicular, or neither to −6(a−b)−8c-6(a - b) - 8c−6(a−b)−8c, where a=(1,3,4)a=(1,3,4)a=(1,3,4), b=(1,0,1)b=(1,0,1)b=(1,0,1), c=(0,1,0)c=(0,1,0)c=(0,1,0).
Previous
Question Type 3: Finding the angle between vectors
Next
Question Type 5: Finding for what value of a parameter are 2 vectors parallel or perpendicular