Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the angle between the vectors (−231)\begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}−231 and (4−12)\begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}4−12.
Find the angle between the vectors (143)\begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}143 and (212)\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}212.
Let u=(cosα,sinα,0)\mathbf{u}=(\cos\alpha,\sin\alpha,0)u=(cosα,sinα,0) and v=(1,0,1)\mathbf{v}=(1,0,1)v=(1,0,1). Find α\alphaα such that the angle between u\mathbf{u}u and v\mathbf{v}v is 45∘45^\circ45∘.
Find the angle between the vector sum (123)+(40−1)\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix}123+40−1 and the vector (23−4)\begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}23−4.
Find the possible values of xxx such that the angle between the vectors (x,1,2)(x,1,2)(x,1,2) and (2,3,4)(2,3,4)(2,3,4) is 60∘60^\circ60∘.
Find the angle between u=(1,−1,2)\mathbf{u}=(1,-1,2)u=(1,−1,2) and v=(−2,4,−1)\mathbf{v}=(-2,4,-1)v=(−2,4,−1).
Given vectors a=(122)\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}a=122 and b=(3x5)\mathbf{b} = \begin{pmatrix} 3 \\ x \\ 5 \end{pmatrix}b=3x5 are perpendicular, find xxx and verify that the angle between them is 90∘90^\circ90∘.
Let u=(2,−1,4)\mathbf{u}=(2,-1,4)u=(2,−1,4) and v=(1,3,−2)\mathbf{v}=(1,3,-2)v=(1,3,−2). Find the angle between u\mathbf{u}u and v\mathbf{v}v.
Find the angle between the vectors (101)\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}101 and (110)\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}110.
Find the acute angle between the vectors (5−31)\begin{pmatrix} 5 \\ -3 \\ 1 \end{pmatrix}5−31 and (243)\begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}243.
Determine the angle between u=(3,−3,1)\mathbf{u}=(3,-3,1)u=(3,−3,1) and v=(−1,2,2)\mathbf{v}=(-1,2,2)v=(−1,2,2).
Show whether the angle between the vectors (1,2,−1)(1,2,-1)(1,2,−1) and (4,0,3)(4,0,3)(4,0,3) is acute or obtuse, and find its measure.
Previous
Question Type 2: Rewriting vector operations
Next
Question Type 4: Determining if combinations of the specific vectors are parallel, perpendicular or neither