Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
For what kkk are the vectors (k2k1)\begin{pmatrix} k^2 \\ k \\ 1 \end{pmatrix}k2k1 and (1−21)\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}1−21 perpendicular?
Find the value of kkk such that the vectors (k2−1)\begin{pmatrix} k \\ 2 \\ -1 \end{pmatrix}k2−1 and (3k5)\begin{pmatrix} 3 \\ k \\ 5 \end{pmatrix}3k5 are perpendicular.
For which kkk are the vectors (2,k,4)(2, k, 4)(2,k,4) and (5,−1,1)(5, -1, 1)(5,−1,1) perpendicular?
Determine the value of kkk such that the vectors (2kk−13)\begin{pmatrix} 2k \\ k-1 \\ 3 \end{pmatrix}2kk−13 and (42−6)\begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix}42−6 are perpendicular.
Determine the value of kkk such that the vector (k3k−2)\begin{pmatrix} k \\ 3 \\ k-2 \end{pmatrix}k3k−2 is perpendicular to the vector (1−12)\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}1−12.
Find all values of kkk for which the vectors (k,2,−1)(k,2,-1)(k,2,−1) and (3,k,5)(3,k,5)(3,k,5) are parallel.
Find kkk so that the vectors (k41)\begin{pmatrix} k \\ 4 \\ 1 \end{pmatrix}k41 and (282)\begin{pmatrix} 2 \\ 8 \\ 2 \end{pmatrix}282 are parallel.
Find all real kkk such that (k,k2,1)(k,k^2,1)(k,k2,1) is perpendicular to (1,2,1)(1,2,1)(1,2,1).
Determine the value of kkk such that the vectors (3k−9)\begin{pmatrix} 3 \\ k \\ -9 \end{pmatrix}3k−9 and (64−18)\begin{pmatrix} 6 \\ 4 \\ -18 \end{pmatrix}64−18 are parallel.
Find all k≠0k \neq 0k=0 for which the vectors (2k4k−6k)\begin{pmatrix} 2k \\ 4k \\ -6k \end{pmatrix}2k4k−6k and (12−3)\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}12−3 are parallel.
Find the values of kkk for which the vectors (1k2)\begin{pmatrix} 1 \\ k \\ 2 \end{pmatrix}1k2 and (36k)\begin{pmatrix} 3 \\ 6 \\ k \end{pmatrix}36k are parallel.
Find the value(s) of kkk such that the vectors (k2k1)\begin{pmatrix} k^2 \\ k \\ 1 \end{pmatrix}k2k1 and (1−21)\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}1−21 are parallel.
Previous
Question Type 4: Determining if combinations of the specific vectors are parallel, perpendicular or neither
Next
No next topic