Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Solve for xxx in the interval 0≤x<2π0\le x<2\pi0≤x<2π: sin(2x)=3cos(x).\sin(2x)=\sqrt3\cos(x).sin(2x)=3cos(x).
Solve for xxx in 0≤x<2π0\le x<2\pi0≤x<2π: sin(3x)=cos(x).\sin(3x)=\cos(x).sin(3x)=cos(x).
Solve for xxx in 0≤x<2π0\le x<2\pi0≤x<2π: sin2(x)+sin(x)cos(x)−cos2(x)=0.\sin^2(x)+\sin(x)\cos(x)-\cos^2(x)=0.sin2(x)+sin(x)cos(x)−cos2(x)=0.
Solve for xxx in −π2<x<π2-\frac{\pi}{2}<x<\frac{\pi}{2}−2π<x<2π: 1+tan(x)=sec(x).1+\tan(x)=\sec(x).1+tan(x)=sec(x).
Solve for xxx in 0<x<π0<x<\pi0<x<π: tan2(x)−sec(x)tan(x)=0.\tan^2(x)-\sec(x)\tan(x)=0.tan2(x)−sec(x)tan(x)=0.
Solve for xxx in 0<x<π20<x<\frac{\pi}{2}0<x<2π: tan2(x)−2tan(x)sec(x)+1=0.\tan^2(x)-2\tan(x)\sec(x)+1=0.tan2(x)−2tan(x)sec(x)+1=0.
Solve for xxx in 0≤x<2π0\le x<2\pi0≤x<2π: 2sin2(x)−3sin(x)cos(x)−cos2(x)=0.2\sin^2(x)-3\sin(x)\cos(x)-\cos^2(x)=0.2sin2(x)−3sin(x)cos(x)−cos2(x)=0.
Solve for xxx in 0≤x<2π0\le x<2\pi0≤x<2π: sin(4x)=2sin(2x).\sin(4x)=2\sin(2x).sin(4x)=2sin(2x).
Solve for xxx in 0≤x<2π0\le x<2\pi0≤x<2π: cos(2x)+cos(4x)=12.\cos(2x)+\cos(4x)=\tfrac12.cos(2x)+cos(4x)=21.
Solve for xxx in 0≤x<2π0\le x<2\pi0≤x<2π: sin(x)+sin(2x)−sin(3x)=0.\sin(x)+\sin(2x)-\sin(3x)=0.sin(x)+sin(2x)−sin(3x)=0.
Solve for xxx in 0≤x<2π0\le x<2\pi0≤x<2π: 3sin(x)−4sin3(x)=12.3\sin(x)-4\sin^3(x)=\tfrac12.3sin(x)−4sin3(x)=21.
Solve for xxx in the interval 0<x<π0<x<\pi0<x<π: sin(3x)sec2(x)=−sin(x)cos2(x)+sin2(x)cos2(x)+cos4(x)−1sec2(x).\frac{\sin(3x)}{\sec^2(x)}=-\sin(x)\cos^2(x)+\sin^2(x)\cos^2(x)+\cos^4(x)-\frac{1}{\sec^2(x)}.sec2(x)sin(3x)=−sin(x)cos2(x)+sin2(x)cos2(x)+cos4(x)−sec2(x)1.
Previous
Question Type 2: Using the identities to rewrite trigonometric expressions
Next
No next topic