Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Solve for xxx in 0<x<π0<x<\pi0<x<π: cot2(x)−csc(x)cot(x)=0.\cot^2(x)-\csc(x)\cot(x)=0.cot2(x)−csc(x)cot(x)=0.
Solve for xxx in the interval 0≤x<2π0 \le x < 2\pi0≤x<2π: sin(x)+sin(2x)−sin(3x)=0.\sin(x) + \sin(2x) - \sin(3x) = 0.sin(x)+sin(2x)−sin(3x)=0.
Solve for xxx in the interval −π2<x<π2-\frac{\pi}{2} < x < \frac{\pi}{2}−2π<x<2π:
1+tanx=secx1+\tan x=\sec x1+tanx=secx
Solve for xxx in 0≤x<2π0 \le x < 2\pi0≤x<2π: cos(2x)+cos(4x)=12\cos(2x) + \cos(4x) = \frac{1}{2}cos(2x)+cos(4x)=21
Solve for xxx in 0≤x<2π0 \le x < 2\pi0≤x<2π: sin(3x)=cos(x)\sin(3x) = \cos(x)sin(3x)=cos(x)
Type: Long Answer | Level: - | Paper: -
Solve for xxx in the interval 0≤x<2π0\le x<2\pi0≤x<2π: sin(2x)=3cos(x)\sin(2x)=\sqrt3\cos(x)sin(2x)=3cos(x)
Solve for xxx in 0≤x<2π0\le x<2\pi0≤x<2π: sin2(x)+sin(x)cos(x)−cos2(x)=0.\sin^2(x)+\sin(x)\cos(x)-\cos^2(x)=0.sin2(x)+sin(x)cos(x)−cos2(x)=0.
Solve for xxx in 0<x<π20 < x < \frac{\pi}{2}0<x<2π: tan2(x)−2tan(x)sec(x)+1=0.\tan^2(x)-2\tan(x)\sec(x)+1=0.tan2(x)−2tan(x)sec(x)+1=0.
Solve for xxx in 0≤x<2π0\le x<2\pi0≤x<2π: 2sin2(x)−3sin(x)cos(x)−cos2(x)=0.2\sin^2(x)-3\sin(x)\cos(x)-\cos^2(x)=0.2sin2(x)−3sin(x)cos(x)−cos2(x)=0.
Solve for xxx in the interval 0≤x<2π0 \le x < 2\pi0≤x<2π: 3sin(x)−4sin3(x)=123\sin(x)-4\sin^3(x)=\frac{1}{2}3sin(x)−4sin3(x)=21
Solve for xxx in 0≤x<2π0\le x<2\pi0≤x<2π: sin(4x)=2sin(2x)\sin(4x)=2\sin(2x)sin(4x)=2sin(2x)
Solve for xxx in the interval 0<x<π0<x<\pi0<x<π: sin(3x)sec2(x)=sin(x)cos2(x)+sin2(x)cos2(x)+cos4(x)−1sec2(x).\frac{\sin(3x)}{\sec^2(x)}=\sin(x)\cos^2(x)+\sin^2(x)\cos^2(x)+\cos^4(x)-\frac{1}{\sec^2(x)}.sec2(x)sin(3x)=sin(x)cos2(x)+sin2(x)cos2(x)+cos4(x)−sec2(x)1.
Previous
Question Type 2: Using the identities to rewrite trigonometric expressions
Next
No next topic